environmental disturbances
Recently Published Documents


TOTAL DOCUMENTS

273
(FIVE YEARS 115)

H-INDEX

24
(FIVE YEARS 5)

Author(s):  
Yalin Yin ◽  
Ye Yuan ◽  
Xiaowen Zhang ◽  
Huhe ◽  
Yunxiang Cheng ◽  
...  

Determining the response of soil fungi in sensitive ecosystems to external environmental disturbances is an important, yet little-known, topic in microbial ecology. In this study, we evaluated the impact of traditional fertilization management practices on the composition, co-occurrence pattern, and functional groups of fungal communities in loessial soil.


2022 ◽  
Vol 23 (1) ◽  
pp. 129-158
Author(s):  
Oktaf Agni Dhewa ◽  
Tri Kuntoro Priyambodo ◽  
Aris Nasuha ◽  
Yasir Mohd Mustofa

The ability of the quadrotor in the waypoint trajectory tracking becomes an essential requirement in the completion of various missions nowadays. However, the magnitude of steady-state errors and multiple overshoots due to environmental disturbances leads to motion instability. These conditions make the quadrotor experience a shift and even change direction from the reference path. As a result, to minimize steady-state error and multiple overshoots, this study employs a Linear Quadratic Regulator control method with the addition of an Integrator. Comparisons between LQR without Integrator and LQR with Integrator were performed. They were implemented on a quadrotor controller to track square and zig-zag waypoint patterns. From experimental results, LQR without Integrator produce of 2 meters steady-state error and -1.04 meters undershoot average with an accuracy of 64.84 % for square pattern, along 3.19 meters steady-state error, and -1.12 meters undershoot average with an accuracy of 46.73 % for a zig-zag way. The LQR method with integrator produce of 1.06 meters steady-state error with accuracy 94.96 % without multiple-overshoot for square pattern, the 1.06 meters steady-state error, and -0.18 meters undershoot average with an accuracy of 86.49 % for the zig-zag way. The results show that the LQR control method with Integrator can minimize and improve steady-state error and multiple overshoots in quadrotor flight. The condition makes the quadrotor able to flying path waypoints with the correct system specification. ABSTRAK: Kemampuan quadrotor dalam pengesanan lintasan waypoint menjadi syarat penting dalam menyelesaikan pelbagai misi pada masa kini. Walau bagaimanapun, besarnya ralat keadaan mantap dan banyak kelebihan kerana gangguan persekitaran menyebabkan ketidakstabilan pergerakan. Keadaan ini menjadikan quadrotor mengalami pergeseran dan bahkan mengubah arah dari jalur rujukan. Oleh itu, kajian ini menggunakan kaedah kawalan Linear Quadratic Regulator dengan penambahan integrator dalam meminimumkan ralat keadaan mantap dan banyak kelebihan. Perbandingan antara LQR tanpa Integrator dan LQR dengan Integrator dilakukan. Mereka dilaksanakan pada pengawal quadrotor untuk mengesan corak titik jalan persegi dan zig-zag. Dari hasil eksperimen, LQR tanpa Integrator menghasilkan ralat keadaan mantap 2 meter dan -1.04 meter rata-rata undur tembak dengan ketepatan 64.84% untuk corak persegi, sepanjang ralat keadaan tetap 3.19 meter, dan -1.12 meter rata-rata undur bawah dengan ketepatan 46.73 % untuk cara zig-zag. Kaedah LQR dengan integrator menghasilkan ralat keadaan mantap 1.06 meter dengan ketepatan 94.96% tanpa tembakan berlebihan untuk corak segi empat sama, ralat keadaan mantap 1.06 meter, dan rata-rata undur tembak -0.18 meter dengan ketepatan 86.49% untuk zig-zag cara. Hasilnya menunjukkan bahawa kaedah kawalan LQR dengan Integrator dapat meminimumkan dan memperbaiki ralat keadaan mantap dan banyak overhoot dalam penerbangan quadrotor. Keadaan tersebut menjadikan quadrotor dapat terbang ke titik jalan dengan spesifikasi sistem yang betul.


2021 ◽  
Author(s):  
Qaiser Waheed ◽  
Huimin Zhou ◽  
Peter Ruoff

Homeostasis plays a central role in our understanding how cells and organisms are able to oppose environmental disturbances and thereby maintain an internal stability. During the last two decades there has been an increased interest in using control engineering methods, especially integral control, in the analysis and design of homeostatic networks. Several reaction kinetic mechanisms have been discovered which lead to integral control. In two of them integral control is achieved, either by the removal of a single control species E by zero-order  kinetics ("single-E controllers"), or by the removal of two control species  by second-order kinetics ("antithetic or dual-E control"). In this paper we show results when the control species E 1  and E 2  in antithetic control are removed enzymatically by ping-pong or ternary-complex mechanisms. Our findings show that enzyme-catalyzed dual-E controllers can work in two control modes. In one mode, one of the two control species is active, but requires zero-order kinetics in its removal. In the other mode, both controller species are active and both are removed enzymatically. Conditions for the two control modes are put forward and biochemical examples with the structure of enzyme-catalyzed dual-E controllers are discussed.


Electronics ◽  
2021 ◽  
Vol 10 (24) ◽  
pp. 3088
Author(s):  
Ming Xue ◽  
Qingxin Yang ◽  
Chunzhi Li ◽  
Pengcheng Zhang ◽  
Shuting Ma ◽  
...  

Dynamic wireless charging enables moving equipment such as electric vehicles, robots to be charged in motion, and thus is a research hotspot. The applications in practice, however, suffer from mutual inductance fluctuation due to unavoidable environmental disturbances. In addition, the load also changes during operation, which makes the problem more complicated. This paper analyzes the impacts of equivalent load and mutual inductances variation over the system by LCC-S topology modeling utilizing two-port theory. The optimal load expression is derived. Moreover, a double-sided control strategy enabling optimal efficiency and power adjustment is proposed. Voltage conducting angles on the inverter and rectifier are introduced. The simulation and experimental results verify the proposed method.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Xuelong Sun ◽  
Shigang Yue ◽  
Michael Mangan

The central complex of the insect midbrain is thought to coordinate insect guidance strategies. Computational models can account for specific behaviours but their applicability across sensory and task domains remains untested. Here we assess the capacity of our previous model (Sun et al., 2020) of visual navigation to generalise to olfactory navigation and its coordination with other guidance in flies and ants. We show that fundamental to this capacity is the use of a biologically-plausible neural copy-and-shift mechanism that ensures sensory information is presented in a format compatible with the insect steering circuit regardless of its source. Moreover, the same mechanism is shown to allow the transfer cues from unstable/egocentric to stable/geocentric frames of reference providing a first account of the mechanism by which foraging insects robustly recover from environmental disturbances. We propose that these circuits can be flexibly repurposed by different insect navigators to address their unique ecological needs.


2021 ◽  
Vol 264 ◽  
pp. 109371
Author(s):  
Kristen S. Ellis ◽  
Michael J. Anteau ◽  
Francesca J. Cuthbert ◽  
Cheri L. Gratto-Trevor ◽  
Joel G. Jorgensen ◽  
...  

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Rui Yu ◽  
Hua Zhou

Purpose Trajectory tracking is an important issue to underactuated unmanned surface vehicles (USVs). However, parametric uncertainties and environmental disturbances bring great challenges to the precise trajectory tracking control of USVs. This paper aims to propose a robust trajectory tracking control algorithm with exponential stability for underactuated USVs with parametric uncertainties and unknown environmental disturbances. Design/methodology/approach In this method, the backstepping method and sliding mode control method are combined to ensure that the underactuated USV can track and maintain the desired trajectory. In addition, a modified switching-gain adaptation algorithm is adopted to enhance the robustness and reduce chattering. Besides, the global exponential stability of the closed-loop system is proved by Lyapunov’s direct method. Findings The proposed method in this paper offers a robust trajectory tracking solution to underactuated USVs and it is verified by simulations and experiments. Compared with the traditional proportion-integral-derivative method and several state-of-the-art algorithms, the proposed method has superior performance in simulation and experimental results. Originality/value This paper proposes a robust trajectory tracking control algorithm with exponential stability for underactuated USVs. The proposed method achieves exponential stability with better robustness and transient performance.


Author(s):  
Ari Laras ◽  
Alifya Fitri Ananda ◽  
Alvi Fauzia ◽  
Astri Maretta ◽  
Munaya Fauziah

Online learning is a learning activity by utilizing the internet network, local area network as a method of interacting in learning such as delivering material. Stress in this study is defined as a condition experienced by a person when there is a mismatch between the demands received and the ability to overcome them. This research is qualitative research using the Rapid Assessment Procedure design. The selection of samples or informants uses the principle of appropriateness, selected by purposive method or determines the criteria for informants who can provide information following the research objectives. Online learning has several causes including lack of concentration due to environmental disturbances, unstable internet network, many assignments from lecturers, lack of communication or social interaction. Online learning for FKM UMJ students is influenced by: lack of concentration due to environmental disturbances, unstable internet network, many assignments from lecturers, lack of communication or social interaction. The way to deal with stressful events in online learning can be done by doing positive activities, looking for calm or refreshing, managing time well.


Sign in / Sign up

Export Citation Format

Share Document