A neural network expert system shell

Author(s):  
Tong-Seng Quah ◽  
Chew-Lim Tan ◽  
Hoon-Heng Teh
Robotica ◽  
2001 ◽  
Vol 19 (6) ◽  
pp. 669-674 ◽  
Author(s):  
Jie Yang ◽  
Chenzhou Ye ◽  
Xiaoli Zhang

Traditional expert systems for fault diagnosis have a bottleneck in knowledge acquisition, and have limitations in knowledge representation and reasoning. A new expert system shell for fault diagnosis is presented in this paper to develop multiple knowledge models (object model, rules, neural network, case-base and diagnose models) hierarchically based on multiple knowledge. The structure of the expert system shell and the knowledge representation of multiple models are described. Diagnostic algorithms are presented for automatic modeling and hierarchical reasoning. It will be shown that the expert system shell is very effective in building diagnostic expert systems.


2016 ◽  
Vol 7 (2) ◽  
pp. 105-112
Author(s):  
Adhi Kusnadi ◽  
Idul Putra

Stress will definitely be experienced by every human being and the level of stress experienced by each individual is different. Stress experienced by students certainly will disturb their study if it is not handled quickly and appropriately. Therefore we have created an expert system using a neural network backpropagation algorithm to help counselors to predict the stress level of students. The network structure of the experiment consists of 26 input nodes, 5 hidden nodes, and 2 the output nodes, learning rate of 0.1, momentum of 0.1, and epoch of 5000, with a 100% accuracy rate. Index Terms - Stress on study, expert system, neural network, Stress Prediction


1988 ◽  
Vol 23 (6) ◽  
pp. 35-38
Author(s):  
Victor Schneider

1988 ◽  
Vol 27 (01) ◽  
pp. 23-33 ◽  
Author(s):  
Fiorella de Rosis ◽  
G. Steve ◽  
C. Biagini ◽  
R. Maurizi-Enrici

SummaryThe decision process for diagnosis and treatment of Hodgkin’s disease at the Institute of Radiology of Rome has been modelled integrating the guidelines of a protocol with uncertainty aspects. Two models have been built, using a PROSPECTOR-like Expert System shell for microcomputers: the first of them treats the uncertainty by the inferential engine of the shell, the second is a probabilistic model. The decisions suggested in a group of simulated and real cases by a section of the two models have been compared with an “objective” final diagnosis; this analysis showed that, in some cases, the two models give different suggestions and that “approximations” of the shell’s inferential engine may induce wrong conclusions. A sensitivity analysis of the probabilistic model showed that the outputs are greatly influenced by variations of parameters, whose subjective estimation appears to be especially difficult. This experience gives the opportunity to consider the risks of building clinical decision models based on Expert System shells, if the assumptions and approximations hidden in the shell have not been previously analyzed in a careful and critical way.


Sign in / Sign up

Export Citation Format

Share Document