Reducing the Effect of a Human Body for Position Estimation using iBeacon

Author(s):  
Takayuki Miyazaki ◽  
Takehiro Makita ◽  
Kenichi Takahashi ◽  
Takao Kawamura ◽  
Kazunori Sugahara
Author(s):  
Firdaus Firdaus ◽  
◽  
Noor Azurati Ahmad ◽  
Shamsul Sahibuddin ◽  
Rudzidatul Akmam Dziyauddin ◽  
...  

WLAN indoor positioning system (IPS) has high accurate of position estimation and minimal cost. However, environmental conditions such as the people presence effect (PPE) greatly influence WLAN signal and it will decrease the accuracy. This research modelled the effect of people around user on signal strength and the accuracy. We have modelled the human body around user effects by proposed a general equation of decrease in signal strength as function of position, distance, and number of people. Signal strength decreased from 5 dBm to 1 dBm when people in line of sight (LOS) position, and start from 0.5 dBm to 0.3 dBm when people in non-line of sight (NLOS) position. The system accuracy decreases due to the presence of people. When the system is in NLOS case, the presence of people causes a decrease in accuracy from 33% to 57%. Then the accuracy decrease from 273% to 334% in LOS case.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Limin Qi

At present, the industry research of volleyball technology is relatively in-depth, and the analysis of the muscle strength characteristics and coordination of the jumping ball is less, which is not conducive to the control of technical movements. This study used a wireless portable surface EMG tester (16 lines) to analyze the EMG of the main muscle groups in athletes’ volleyball and conducted a video synchronization test method to find the position of the human body. Therefore, a background-based frame difference method is proposed to detect the position and obtain the precise position of the human body. Experiments show that the background-based three-frame difference method effectively eliminates the “hole” effect of the original three-frame difference method and provides an accurate and complete framework for identifying the human body. Adjust the recognition frame according to the proportion of the human body in the image, and use the predefined parameters of the severe frame to perform forward/volleyball background segmentation. The novelty of this document lies in the completion of the complete human body placement of the above three tasks, precapture/background segmentation, and an improved human body position estimation algorithm to extract the human body pose from the video. First, locate the human body in each frame of the video, and then, perform the process of estimating the position of the graphic model based on the color and texture of the unit. After recognizing the gesture of each image in the video, the recognition result will be displayed. Experiments show that after detecting the position of the human body, the predefined frame setting process of the tomb is carried out in two steps, which improves the automation of the human body image detection algorithm, effectively extracts the human motion video, and increases the motion capture rate by more than 30%, to provide a useful reference for the improvement of college volleyball players’ movement skills and training competitions.


ICCAS 2010 ◽  
2010 ◽  
Author(s):  
Shimon Ajisaka ◽  
Sousuke Nakamura ◽  
Kiyoaki Takiguchi ◽  
Akira Hirose ◽  
Hideki Hashimoto

Author(s):  
Shulin Wen ◽  
Jingwei Feng ◽  
A. Krajewski ◽  
A. Ravaglioli

Hydroxyapatite bioceramics has attracted many material scientists as it is the main constituent of the bone and the teeth in human body. The synthesis of the bioceramics has been performed for years. Nowadays, the synthetic work is not only focused on the hydroapatite but also on the fluorapatite and chlorapatite bioceramics since later materials have also biological compatibility with human tissues; and they may also be very promising for clinic purpose. However, in comparison of the synthetic bioceramics with natural one on microstructure, a great differences were observed according to our previous results. We have investigated these differences further in this work since they are very important to appraise the synthetic bioceramics for their clinic application.The synthetic hydroxyapatite and chlorapatite were prepared according to A. Krajewski and A. Ravaglioli and their recent work. The briquettes from different hydroxyapatite or chlorapatite powders were fired in a laboratory furnace at the temperature of 900-1300°C. The samples of human enamel selected for the comparison with synthetic bioceramics were from Chinese adult teeth.


Sign in / Sign up

Export Citation Format

Share Document