Modelling the Effect of Human Body around User on Signal Strength and Accuracy of Indoor Positioning

Author(s):  
Firdaus Firdaus ◽  
◽  
Noor Azurati Ahmad ◽  
Shamsul Sahibuddin ◽  
Rudzidatul Akmam Dziyauddin ◽  
...  

WLAN indoor positioning system (IPS) has high accurate of position estimation and minimal cost. However, environmental conditions such as the people presence effect (PPE) greatly influence WLAN signal and it will decrease the accuracy. This research modelled the effect of people around user on signal strength and the accuracy. We have modelled the human body around user effects by proposed a general equation of decrease in signal strength as function of position, distance, and number of people. Signal strength decreased from 5 dBm to 1 dBm when people in line of sight (LOS) position, and start from 0.5 dBm to 0.3 dBm when people in non-line of sight (NLOS) position. The system accuracy decreases due to the presence of people. When the system is in NLOS case, the presence of people causes a decrease in accuracy from 33% to 57%. Then the accuracy decrease from 273% to 334% in LOS case.

Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4338
Author(s):  
Abdulkadir Uzun ◽  
Firas Abdul Ghani ◽  
Amir Mohsen Ahmadi Najafabadi ◽  
Hüsnü Yenigün ◽  
İbrahim Tekin

In this paper, an indoor positioning system using Global Positioning System (GPS) signals in the 433 MHz Industrial Scientific Medical (ISM) band is proposed, and an experimental demonstration of how the proposed system operates under both line-of-sight and non-line-of-sight conditions on a building floor is presented. The proposed method is based on down-converting (DC) repeaters and an up-converting (UC) receiver. The down-conversion is deployed to avoid the restrictions on the use of Global Navigation Satellite Systems (GNSS) repeaters, to achieve higher output power, and to expose the GPS signals to lower path loss. The repeaters receive outdoor GPS signals at 1575.42 MHz (L1 band), down-convert them to the 433 MHz ISM band, then amplify and retransmit them to the indoor environment. The front end up-converter is combined with an off-the-shelf GPS receiver. When GPS signals at 433 MHz are received by the up-converting receiver, it then amplifies and up-converts these signals back to the L1 frequency. Subsequently, the off-the-shelf GPS receiver calculates the pseudo-ranges. The raw data are then sent from the receiver over a 2.4 GHz Wi-Fi link to a remote computer for data processing and indoor position estimation. Each repeater also has an attenuator to adjust its amplification level so that each repeater transmits almost equal signal levels in order to prevent jamming of the off-the-shelf GPS receiver. Experimental results demonstrate that the indoor position of a receiver can be found with sub-meter accuracy under both line-of-sight and non-line-of-sight conditions. The estimated position was found to be 54 and 98 cm away from the real position, while the 50% circular error probable (CEP) of the collected samples showed a radius of 3.3 and 4 m, respectively, for line-of-sight and non-line-of-sight cases.


2021 ◽  
Author(s):  
Paolo Carbone ◽  
Guido De Angelis ◽  
Valter Pasku ◽  
Alessio De Angelis ◽  
Marco Dionigi ◽  
...  

<div><div><div><p>This paper describes the design and realization of a Magnetic Indoor Positioning System. The system is entirely realized using off-the-shelf components and is based on inductive coupling between resonating coils. Both system-level architecture and realization details are described along with experimental results. The realized system exhibits a maximum positioning error of less than 10 cm in an indoor environment over a 3×3 m2 area. Extensive experiments in larger areas, in non-line-of-sight conditions, and in unfavorable geometric configurations, show sub-meter accuracy, thus validating the robustness of the system with respect to other existing solutions.</p></div></div></div>


2021 ◽  
Vol 10 (3) ◽  
pp. 1475-1483
Author(s):  
Hakam Marwan Zaidan ◽  
Emad Ahmed Mohammed ◽  
Dheyaa Hussein Alhelal

WiFi access points are widely spread everywhere in all our daily life routines. Using these devices to provide services other than the Internet is becoming familiar nowadays.This paper conducts an experimental study to estimate the number of people in an indoor environment through two system setups, line of sight, and non-line of sight. Relationship modeling between WiFi received signal and the number of people uses polynomial regression. The experiment comprised of two stages: first is the data collection from a controlled number of people. Then, the collected data used to train the system through polynomial regression. The second is testing the system’s effectiveness by applying it to an uncontrolled environment. Testing results revealed efficiency in using WiFi received signal strength to do the people counting (up to 60) because of the accuracy achievements of 93.17% in the line of sight system. The non-line of sight system disclosed randomness in the received signal strength indicator regardless of the change in the number of people. The  randomness is mainly caused by the fading effect of the concrete wall. Therefore it is inefficient to use the non-line of sight system in concrete buildings.


2021 ◽  
Author(s):  
Paolo Carbone ◽  
Guido De Angelis ◽  
Valter Pasku ◽  
Alessio De Angelis ◽  
Marco Dionigi ◽  
...  

<div><div><div><p>This paper describes the design and realization of a Magnetic Indoor Positioning System. The system is entirely realized using off-the-shelf components and is based on inductive coupling between resonating coils. Both system-level architecture and realization details are described along with experimental results. The realized system exhibits a maximum positioning error of less than 10 cm in an indoor environment over a 3×3 m2 area. Extensive experiments in larger areas, in non-line-of-sight conditions, and in unfavorable geometric configurations, show sub-meter accuracy, thus validating the robustness of the system with respect to other existing solutions.</p></div></div></div>


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Herryawan Pujiharsono ◽  
Duwi Utami ◽  
Rafina Destiarti Ainul

Wireless network technology that is used today is developing rapidly because of the increasing need for location information of an object with high accuracy. Global Positioning System (GPS) is a technology to estimate the current location. Unfortunately, GPS has a disadvantage of low accuracy of 10 meters when used indoors. Therefore, it began to be developed with the concept of an indoor positioning system. This is a technology used to estimate the location of objects in a building by utilizing WSN (Wireless Sensor Network). The purpose of this study is to estimate the location of the unknown nodes in the lecturer room as an object and obtain the accuracy of the system being tested. The positioning process is based on the received signal strength (RSSI) on the unknown node using the ZigBee module. The trilateration method is used to estimate unknown node located at the observation area based on the signal strength received at the time of testing. The result shows that the path loss coefficient value at the observation area is 0.9836 and the Mean Square Error of the test is 1.251 meters, which indicates that the system can be a solution to the indoor GPS problem.


2020 ◽  
Vol 10 (3) ◽  
pp. 956 ◽  
Author(s):  
Minghao Si ◽  
Yunjia Wang ◽  
Shenglei Xu ◽  
Meng Sun ◽  
Hongji Cao

In recent years, many new technologies have been used in indoor positioning. In 2016, IEEE 802.11-2016 created a Wi-Fi fine timing measurement (FTM) protocol, making Wi-Fi ranging more robust and accurate, and providing meter-level positioning accuracy. However, the accuracy of positioning methods based on the new ranging technology is influenced by non-line-of-sight (NLOS) errors. To enhance the accuracy, a positioning method with LOS (line-of-sight)/NLOS identification is proposed in this paper. A Gaussian model has been established to identify NLOS signals. After identifying and discarding NLOS signals, the least square (LS) algorithm is used to calculate the location. The results of the numerical experiments indicate that our algorithm can identify and discard NLOS signals with a precision of 83.01% and a recall of 74.97%. Moreover, compared with the traditional algorithms, by all ranging results, the proposed method features more accurate and stable results for indoor positioning.


Sign in / Sign up

Export Citation Format

Share Document