A Hybrid Motion Planning Algorithm for Multi-robot Formation in a Dynamic Environment

Author(s):  
Liping Feng ◽  
Meng Zhou ◽  
Biao Hu
2012 ◽  
Vol 18 (5) ◽  
pp. 445-452 ◽  
Author(s):  
Seung-Hoon Lee ◽  
Dong-Hyung Kim ◽  
Min-Sung Kang ◽  
Myung-Soo Gil ◽  
Young-Soo Kim ◽  
...  

2021 ◽  
Vol 18 (4) ◽  
pp. 172988142110192
Author(s):  
Ben Zhang ◽  
Denglin Zhu

Innovative applications in rapidly evolving domains such as robotic navigation and autonomous (driverless) vehicles rely on motion planning systems that meet the shortest path and obstacle avoidance requirements. This article proposes a novel path planning algorithm based on jump point search and Bezier curves. The proposed algorithm consists of two main steps. In the front end, the improved heuristic function based on distance and direction is used to reduce the cost, and the redundant turning points are trimmed. In the back end, a novel trajectory generation method based on Bezier curves and a straight line is proposed. Our experimental results indicate that the proposed algorithm provides a complete motion planning solution from the front end to the back end, which can realize an optimal trajectory from the initial point to the target point used for robot navigation.


2018 ◽  
Vol 8 (4) ◽  
pp. 1-33 ◽  
Author(s):  
Yue Wang ◽  
Laura R. Humphrey ◽  
Zhanrui Liao ◽  
Huanfei Zheng

2021 ◽  
Vol 6 (2) ◽  
pp. 2256-2263
Author(s):  
Hai Zhu ◽  
Francisco Martinez Claramunt ◽  
Bruno Brito ◽  
Javier Alonso-Mora

2020 ◽  
Vol 10 (24) ◽  
pp. 9137
Author(s):  
Hongwen Zhang ◽  
Zhanxia Zhu

Motion planning is one of the most important technologies for free-floating space robots (FFSRs) to increase operation safety and autonomy in orbit. As a nonholonomic system, a first-order differential relationship exists between the joint angle and the base attitude of the space robot, which makes it pretty challenging to implement the relevant motion planning. Meanwhile, the existing planning framework must solve inverse kinematics for goal configuration and has the limitation that the goal configuration and the initial configuration may not be in the same connected domain. Thus, faced with these questions, this paper investigates a novel motion planning algorithm based on rapidly-exploring random trees (RRTs) for an FFSR from an initial configuration to a goal end-effector (EE) pose. In a motion planning algorithm designed to deal with differential constraints and restrict base attitude disturbance, two control-based local planners are proposed, respectively, for random configuration guiding growth and goal EE pose-guiding growth of the tree. The former can ensure the effective exploration of the configuration space, and the latter can reduce the possibility of occurrence of singularity while ensuring the fast convergence of the algorithm and no violation of the attitude constraints. Compared with the existing works, it does not require the inverse kinematics to be solved while the planning task is completed and the attitude constraint is preserved. The simulation results verify the effectiveness of the algorithm.


Sign in / Sign up

Export Citation Format

Share Document