Probabilistic Multi-Robot Path Planning with High-Level Specifications using Petri Net Models

Author(s):  
Eduardo Montijano ◽  
Cristian Mahulea
2013 ◽  
Vol 24 (4) ◽  
pp. 417-445 ◽  
Author(s):  
Marius Kloetzer ◽  
Cristian Mahulea

2013 ◽  
Vol 380-384 ◽  
pp. 1482-1487
Author(s):  
Jie Shao ◽  
Hai Xia Lin ◽  
Bin Song

Multi-robot path planning using shared resources, easily conflict, prioritisation is the shared resource conflicts to resolve an important technology. This paper presents a learning classifier based on dynamic allocation of priority methods to improve the performance of the robot team. Individual robots learn to optimize their behaviors first, and then a high-level planner robot is introduced and trained to resolve conflicts by assigning priority. The novel approach is designed for Partially Observable Markov Decision Process environments. Simulation results show that the method used to solve the conflict in multi-robot path planning is effective and improve the capacity of multi-robot path planning.


2021 ◽  
Author(s):  
Mengqing Fan ◽  
Jiawang He ◽  
Susheng Ding ◽  
Yuanhao Ding ◽  
Meng Li ◽  
...  

2020 ◽  
Vol 17 (5) ◽  
pp. 172988142093615
Author(s):  
Biwei Tang ◽  
Kui Xiang ◽  
Muye Pang ◽  
Zhu Zhanxia

Path planning is of great significance in motion planning and cooperative navigation of multiple robots. Nevertheless, because of its high complexity and nondeterministic polynomial time hard nature, efficiently tackling with the issue of multi-robot path planning remains greatly challenging. To this end, enhancing a coevolution mechanism and an improved particle swarm optimization (PSO) algorithm, this article presents a coevolution-based particle swarm optimization method to cope with the multi-robot path planning issue. Attempting to well adjust the global and local search abilities and address the stagnation issue of particle swarm optimization, the proposed particle swarm optimization enhances a widely used standard particle swarm optimization algorithm with the evolutionary game theory, in which a novel self-adaptive strategy is proposed to update the three main control parameters of particles. Since the convergence of particle swarm optimization significantly influences its optimization efficiency, the convergence of the proposed particle swarm optimization is analytically investigated and a parameter selection rule, sufficiently guaranteeing the convergence of this particle swarm optimization, is provided in this article. The performance of the proposed planning method is verified through different scenarios both in single-robot and in multi-robot path planning problems. The numerical simulation results reveal that, compared to its contenders, the proposed method is highly promising with respect to the path optimality. Also, the computation time of the proposed method is comparable with those of its peers.


Author(s):  
Abhijeet Ravankar ◽  
Ankit A. Ravankar ◽  
Michiko Watanabe ◽  
Yohei Hoshino ◽  
Arpit Rawankar

Sign in / Sign up

Export Citation Format

Share Document