GPU Parallel Optimization of Hyperspectral Image Kernel Sparse Representation Classification Based on Spatial-Spectral Graph Regularization

Author(s):  
Jida Zheng ◽  
Zebin Wu ◽  
Qicong Wang ◽  
Jianjun Liu ◽  
Zhihui Wei ◽  
...  
Author(s):  
Haoliang Yuan

Sparse representation classification (SRC) has been successfully applied into hyperspectral image (HSI). A test sample (pixel) can be linearly represented by a few training samples of the training set. The class label of the test sample is then decided by the reconstruction residuals. To incorporate the spatial information to improve the classification performance, a patch matrix, which includes a spatial neighborhood set, is used to replace the original pixel. Generally, the objective function of the reconstruction residuals is represented as Frobenius-norm, which actually treats the elements in the reconstruction residuals in the same way. However, when a patch locates in the image edge, the samples in the patch may belong to different classes. Frobenius-norm is not suitable to compute the reconstruction residuals. In this paper, we propose a robust patch-based sparse representation classification (RPSRC) based on [Formula: see text]-norm. An iteration algorithm is given to compute RPSRC efficiently. Extensive experimental results on two real-life HSI datasets demonstrate the effectiveness of RPSRC.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Haifeng Sima ◽  
Pei Liu ◽  
Lanlan Liu ◽  
Aizhong Mi ◽  
Jianfang Wang

Aiming at solving the difficulty of modeling on spatial coherence, complete feature extraction, and sparse representation in hyperspectral image classification, a joint sparse representation classification method is investigated by flexible patches sampling of superpixels. First, the principal component analysis and total variation diffusion are employed to form the pseudo color image for simplifying superpixels computing with (simple linear iterative clustering) SLIC model. Then, we design a joint sparse recovery model by sampling overcomplete patches of superpixels to estimate joint sparse characteristics of test pixel, which are carried out on the orthogonal matching pursuit (OMP) algorithm. At last, the pixel is labeled according to the minimum distance constraint for final classification based on the joint sparse coefficients and structured dictionary. Experiments conducted on two real hyperspectral datasets show the superiority and effectiveness of the proposed method.


Author(s):  
A. Valli Bhasha ◽  
B. D. Venkatramana Reddy

The image super-resolution methods with deep learning using Convolutional Neural Network (CNN) have been producing admirable advancements. The proposed image resolution model involves the following two main analyses: (i) analysis using Adaptive Discrete Wavelet Transform (ADWT) with Deep CNN and (ii) analysis using Non-negative Structured Sparse Representation (NSSR). The technique termed as NSSR is used to recover the high-resolution (HR) images from the low-resolution (LR) images. The experimental evaluation involves two phases: Training and Testing. In the training phase, the information regarding the residual images of the dataset are trained using the optimized Deep CNN. On the other hand, the testing phase helps to generate the super resolution image using the HR wavelet subbands (HRSB) and residual images. As the main novelty, the filter coefficients of DWT are optimized by the hybrid Fire Fly-based Spotted Hyena Optimization (FF-SHO) to develop ADWT. Finally, a valuable performance evaluation on the two benchmark hyperspectral image datasets confirms the effectiveness of the proposed model over the existing algorithms.


2017 ◽  
Vol 22 (S5) ◽  
pp. 10935-10946 ◽  
Author(s):  
Yang He ◽  
Gongfa Li ◽  
Yajie Liao ◽  
Ying Sun ◽  
Jianyi Kong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document