Communities Detection Algorithm Based on General Stochastic Block Model in Mobile Social Networks

Author(s):  
Cong Wan ◽  
Sancheng Peng ◽  
Cong Wang ◽  
Ying Yuan
2016 ◽  
Vol 30 (16) ◽  
pp. 1650092 ◽  
Author(s):  
Tingting Wang ◽  
Weidi Dai ◽  
Pengfei Jiao ◽  
Wenjun Wang

Many real-world data can be represented as dynamic networks which are the evolutionary networks with timestamps. Analyzing dynamic attributes is important to understanding the structures and functions of these complex networks. Especially, studying the influential nodes is significant to exploring and analyzing networks. In this paper, we propose a method to identify influential nodes in dynamic social networks based on identifying such nodes in the temporal communities which make up the dynamic networks. Firstly, we detect the community structures of all the snapshot networks based on the degree-corrected stochastic block model (DCBM). After getting the community structures, we capture the evolution of every community in the dynamic network by the extended Jaccard’s coefficient which is defined to map communities among all the snapshot networks. Then we obtain the initial influential nodes of the dynamic network and aggregate them based on three widely used centrality metrics. Experiments on real-world and synthetic datasets demonstrate that our method can identify influential nodes in dynamic networks accurately, at the same time, we also find some interesting phenomena and conclusions for those that have been validated in complex network or social science.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Abeer A. Zaki ◽  
Nesma A. Saleh ◽  
Mahmoud A. Mahmoud

PurposeThis study aims to assess the effect of updating the Phase I data – to enhance the parameters' estimates – on the control charts' detection power designed to monitor social networks.Design/methodology/approachA dynamic version of the degree corrected stochastic block model (DCSBM) is used to model the network. Both the Shewhart and exponentially weighted moving average (EWMA) control charts are used to monitor the model parameters. A performance comparison is conducted for each chart when designed using both fixed and moving windows of networks.FindingsOur results show that continuously updating the parameters' estimates during the monitoring phase delays the Shewhart chart's detection of networks' anomalies; as compared to the fixed window approach. While the EWMA chart performance is either indifferent or worse, based on the updating technique, as compared to the fixed window approach. Generally, the EWMA chart performs uniformly better than the Shewhart chart for all shift sizes. We recommend the use of the EWMA chart when monitoring networks modeled with the DCSBM, with sufficiently small to moderate fixed window size to estimate the unknown model parameters.Originality/valueThis study shows that the excessive recommendations in literature regarding the continuous updating of Phase I data during the monitoring phase to enhance the control chart performance cannot generally be extended to social network monitoring; especially when using the DCSBM. That is to say, the effect of continuously updating the parameters' estimates highly depends on the nature of the process being monitored.


2014 ◽  
Vol 24 (11) ◽  
pp. 2699-2709 ◽  
Author(s):  
Bian-Fang CHAI ◽  
Jian YU ◽  
Cai-Yan JIA ◽  
Jing-Hong WANG

2014 ◽  
Vol 36 (3) ◽  
pp. 613-625 ◽  
Author(s):  
Hai-Yang HU ◽  
Zhong-Jin LI ◽  
Hua HU ◽  
Ge-Hua ZHAO

Author(s):  
Seyyed Mohammad Safi ◽  
Ali Movaghar ◽  
Komeil Safikhani Mahmoodzadeh

Sign in / Sign up

Export Citation Format

Share Document