Improving the printing quality of an inkjet printhead using MIMO model predictive control

Author(s):  
M. Ezzeldin ◽  
S. Weiland ◽  
P. P. J. van den Bosch
Author(s):  
Oleksandr Stepanets ◽  
Yurii Mariiash

Today in Ukraine and the world, the problem of energy saving and reducing the cost of smelted steel is state of art. Metallurgical enterprises are developing in conditions of fierce competition, the main reason is that Ukrainian products are extremely energy-intensive due to the depreciation of fixed assets and outdated technological processes. The basic oxygen furnace process is a process of producing steel from liquid cast iron with the addition of steel scrap to the converter and blowing oxygen from above through a water-cooling lance. Nowadays, the production of steel by BOF process is the most popular in the world and is becoming increasingly common. The main disadvantage of the basic oxygen furnace is the need to provide the initial amount of heat (in the form of liquid cast iron) and as a consequence - restrictions on the processing of scrap metal. Reducing the cost of basic oxygen furnace steel is achieved by increasing the share of scrap metal by increasing the degree of afterburning of CO to CO2 in the cavity of the converter, by optimal control of the parameters of the blast mode using model-predictive control. The principle of model-predictive control is based on a mathematical model of the plant. This approach minimizes the functional that characterizes the quality of the process. The linear-quadratic functional was chosen. A forecasting model is proposed taking into account the constraint on changing the position of the lance and the pneumatic oxygen supply valve. It was found that the change in the rate of decarburization of the metal depends on the distance of the lance to the level of the quiet bath and affects the degree of afterburning of CO to CO2. The decarburization process is non-stationary, described by a first-order inertial model, the transfer coefficient and time constant of which depends on the melting period and the duration of the purge. The mathematical model of the blast mode of oxygen-converter melting has been improved, taking into account the influence of the blast intensity on the decarburization process of the bath, which allowed to increase the accuracy and quality of blast control in terms of changing oxygen flow during purging. The simulation results of the automatic control system show that the model-predictive regulator provides the required level of carbon dioxide in the converter gases when the flow rate of oxygen for purge changes.


Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 328
Author(s):  
Felix Garcia-Torres ◽  
Sergio Vazquez ◽  
Isabel M. Moreno-Garcia ◽  
Aurora Gil-de-Castro ◽  
Pedro Roncero-Sanchez ◽  
...  

In electric power systems, any deviation with respect to the theoretical sinusoidal waveform is considered to be a disturbance in the power quality of the electrical grid. The deviation can alter any of the parameters of the waveform: frequency, amplitude, and symmetry among phases. Microgrid, as a part of the electric power system, has to contribute providing an adequate current waveform in grid connected-mode, as well as to guarantee similar voltage features than the standard requirement given for public distribution grids under normal exploitation conditions in islanded mode. Adequate power quality supply is necessary for the correct compatibility between all the devices connected to the same grid. In this paper, the power quality of microgrids is managed using a Model Predictive Control (MPC) methodology which regulates the power converters of the microgrids in order to achieve the requirements. The control algorithm is developed for the following microgrids working modes: grid-connected, islanded, and interconnected. The simulation results demonstrate that the proposed methodology improves the transient response in comparison with classical methods in all the working modes, minimizing the harmonic content in the current and the voltage even with the presence of non-balanced and non-harmonic-free three-phase voltage and current systems.


2015 ◽  
Vol 45 ◽  
pp. 194-206 ◽  
Author(s):  
A.P. Wiese ◽  
M.J. Blom ◽  
C. Manzie ◽  
M.J. Brear ◽  
A. Kitchener

Author(s):  
Jing Zhang ◽  
Jiexiong Ding ◽  
Qingzhao Li ◽  
Qicheng Ding ◽  
Zhong Jiang ◽  
...  

In the multi-axis high-speed and high-precision machining process, the contouring error and the feed rate of tool tip and affect the quality of machined workpiece and the processing efficiency, respectively. The faster feed motion will result in greater tracking error of each axis. The contouring error which directly affects the quality of machined part is caused by the tracking errors of the axes. Obviously, it is difficult to improve the contouring accuracy and increase the feed rate simultaneously. To this end, a novel optimization model is developed here based on the model predictive control method. First, the feed servo model of translational and rotary axes are established, and the contouring error model is afterwards constructed. Subsequently, the optimization algorithm is derived to achieve the high processing speed, and input constraints are addressed to avoid violation of the performance limitation of the drivers. In addition, contouring error constraint, which is obtained by calculating the contouring error of the processed path, is addressed to high contour accuracy. Finally, a simulation is conducted to verify the effectiveness and superiority of the proposed method.


2011 ◽  
Vol 44 (1) ◽  
pp. 11544-11549 ◽  
Author(s):  
M. Ezzeldin ◽  
P.P.J. van den Bosch ◽  
S. Weiland

Sign in / Sign up

Export Citation Format

Share Document