Impedance-based Backdrivability Recovery of a Lower-limb Exoskeleton for Knee Rehabilitation

Author(s):  
Miguel D. Sanchez Manchola ◽  
Luis J. Arciniegas Mayag ◽  
Marcela Munera ◽  
Carlos A. Cifuentes Garcia
Author(s):  
Wilian dos Santos ◽  
Samuel Lourenco ◽  
Adriano Siqueira ◽  
Polyana Ferreira Nunes

Author(s):  
Zhijun Li ◽  
Kuankuan Zhao ◽  
Longbin Zhang ◽  
Xinyu Wu ◽  
Tao Zhang ◽  
...  

Mechatronics ◽  
2021 ◽  
Vol 78 ◽  
pp. 102610
Author(s):  
Jinsong Zhao ◽  
Tao Yang ◽  
Zhilei Ma ◽  
Chifu Yang ◽  
Zhipeng Wang ◽  
...  

2020 ◽  
Vol 53 (2) ◽  
pp. 8704-8709
Author(s):  
Zhenlei Chen ◽  
Huiyu Xiong ◽  
Xinran Wang ◽  
Qing Guo ◽  
Yan Shi ◽  
...  

2021 ◽  
pp. 107754632110317
Author(s):  
Jin Tian ◽  
Liang Yuan ◽  
Wendong Xiao ◽  
Teng Ran ◽  
Li He

The main objective of this article is to solve the trajectory following problem for lower limb exoskeleton robot by using a novel adaptive robust control method. The uncertainties are considered in lower limb exoskeleton robot system which include initial condition offset, joint resistance, structural vibration, and environmental interferences. They are time-varying and have unknown boundaries. We express the trajectory following problem as a servo constraint problem. In contrast to conventional control methods, Udwadia–Kalaba theory does not make any linearization or approximations. Udwadia–Kalaba theory is adopted to derive the closed-form constrained equation of motion and design the proposed control. We also put forward an adaptive law as a performance index whose type is leakage. The proposed control approach ensures the uniform boundedness and uniform ultimate boundedness of the lower limb exoskeleton robot which are demonstrated via the Lyapunov method. Finally, simulation results have shown the tracking effect of the approach presented in this article.


Sign in / Sign up

Export Citation Format

Share Document