exoskeleton robot
Recently Published Documents


TOTAL DOCUMENTS

471
(FIVE YEARS 192)

H-INDEX

22
(FIVE YEARS 6)

Cobot ◽  
2022 ◽  
Vol 1 ◽  
pp. 1
Author(s):  
Pengbo Li ◽  
Can Wang ◽  
Bailin He ◽  
Jiaqing Liu ◽  
Xinyu Wu

Background: As the world's aging population increases, the number of hemiplegic patients is increasing year by year. At present, in many countries with low medical level, there are not enough rehabilitation specialists. Due to the different condition of patients, the current rehabilitation training system cannot be applied to all patients. so that patients with hemiplegia cannot get effective rehabilitation training. Methods: Through a motion capture experiment, the mechanical design of the hip joint, knee joint and ankle joint was rationally optimized based on the movement data. Through the kinematic analysis of each joint of the hemiplegic exoskeleton robot, the kinematic relationship of each joint mechanism was obtained, and the kinematics analysis of the exoskeleton robot was performed using the Denavit-Hartenberg (D-H) method. The kinematics simulation of the robot was carried out in automatic dynamic analysis of mechanical systems (ADAMS), and the theoretical calculation results were compared with the simulation results to verify the correctness of the kinematics relationship. According to the exoskeleton kinematics model, a mirror teaching method of gait planning was proposed, allowing the affected leg to imitate the movement of the healthy leg with the help of an exoskeleton robot. Conclusions: A new hemiplegic exoskeleton robot designed by Shenzhen Institute of Advanced Technology (SIAT-H) is proposed, which is lightweight, modular and anthropomorphic. The kinematics of the robot have been analyzed, and a mirror training gait is proposed to enable the patient to form a natural walking posture. Finally, the wearable walking experiment further proves the feasibility of the structure and gait planning of the hemiplegic exoskeleton robot.


Author(s):  
WenDong Wang ◽  
JunBo Zhang ◽  
Xin Wang ◽  
XiaoQing Yuan ◽  
Peng Zhang

AbstractThe motion intensity of patient is significant for the trajectory control of exoskeleton robot during rehabilitation, as it may have important influence on training effect and human–robot interaction. To design rehabilitation training task according to situation of patients, a novel control method of rehabilitation exoskeleton robot is designed based on motion intensity perception model. The motion signal of robot and the heart rate signal of patient are collected and fused into multi-modal information as the input layer vector of deep learning framework, which is used for the human–robot interaction model of control system. A 6-degree of freedom (DOF) upper limb rehabilitation exoskeleton robot is designed previously to implement the test. The parameters of the model are iteratively optimized by grouping the experimental data, and identification effect of the model is analyzed and compared. The average recognition accuracy of the proposed model can reach up to 99.0% in the training data set and 95.7% in the test data set, respectively. The experimental results show that the proposed motion intensity perception model based on deep neural network (DNN) and the trajectory control method can improve the performance of human–robot interaction, and it is possible to further improve the effect of rehabilitation training.


Robotica ◽  
2022 ◽  
pp. 1-16
Author(s):  
Peng Zhang ◽  
Junxia Zhang

Abstract Efficient and high-precision identification of dynamic parameters is the basis of model-based robot control. Firstly, this paper designed the structure and control system of the developed lower extremity exoskeleton robot. The dynamics modeling of the exoskeleton robot is performed. The minimum parameter set of the identified parameters is determined. The dynamic model is linearized based on the parallel axis theory. Based on the beetle antennae search algorithm (BAS) and particle swarm optimization (PSO), the beetle swarm optimization algorithm (BSO) was designed and applied to the identification of dynamic parameters. The update rule of each particle originates from BAS, and there is an individual’s judgment on the environment space in each iteration. This method does not rely on the historical best solution in the PSO and the current global optimal solution of the individual particle, thereby reducing the number of iterations and improving the search speed and accuracy. Four groups of test functions with different characteristics were used to verify the performance of the proposed algorithm. Experimental results show that the BSO algorithm has a good balance between exploration and exploitation capabilities to promote the beetle to move to the global optimum. Besides, the test was carried out on the exoskeleton dynamics model. This method can obtain independent dynamic parameters and achieve ideal identification accuracy. The prediction result of torque based on the identification method is in good agreement with the ideal torque of the robot control.


Robotica ◽  
2022 ◽  
pp. 1-16
Author(s):  
Peng Zhang ◽  
Junxia Zhang

Abstract In order to assist patients with lower limb disabilities in normal walking, a new trajectory learning scheme of limb exoskeleton robot based on dynamic movement primitives (DMP) combined with reinforcement learning (RL) was proposed. The developed exoskeleton robot has six degrees of freedom (DOFs). The hip and knee of each artificial leg can provide two electric-powered DOFs for flexion/extension. And two passive-installed DOFs of the ankle were used to achieve the motion of inversion/eversion and plantarflexion/dorsiflexion. The five-point segmented gait planning strategy is proposed to generate gait trajectories. The gait Zero Moment Point stability margin is used as a parameter to construct a stability criteria to ensure the stability of human-exoskeleton system. Based on the segmented gait trajectory planning formation strategy, the multiple-DMP sequences were proposed to model the generation trajectories. Meanwhile, in order to eliminate the effect of uncertainties in joint space, the RL was adopted to learn the trajectories. The experiment demonstrated that the proposed scheme can effectively remove interferences and uncertainties.


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Zhao-yang Li ◽  
Yue-hong Dai ◽  
Jun-yao Wang ◽  
Peng Tang

To eliminate the influence of spacesuits’ joint resistant torque on the operation of astronauts, an active spacesuit scheme based on the joint-assisted exoskeleton technology is proposed. Firstly, we develop a prototype of the upper limb exoskeleton robot and theoretically analyse the prototype to match astronauts’ motion behavior. Then, the Jiles-Atherton model is adopted to describe the hysteretic characteristic of joint resistant torque. Considering the parameter identification effects in the Jiles-Atherton model and the local optimum problem of the basic PSO (particle swarm optimization) algorithm, a SA- (simulated annealing-) PSO algorithm is proposed to identify the Jiles-Atherton model parameters. Compared with the modified PSO algorithm, the convergence rate of the designed SA-PSO algorithm is advanced by 6.25% and 20.29%, and the fitting accuracy is improved by 14.45% and 46.5% for upper limb joint model. Simulation results show that the identified J-A model can show good agreements with the measured experimental data and well predict the unknown joint resistance torque.


Life ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 64
Author(s):  
Dongdong Bu ◽  
Shuxiang Guo ◽  
He Li

The surface electromyography (sEMG) signal is widely used as a control source of the upper limb exoskeleton rehabilitation robot. However, the traditional way of controlling the exoskeleton robot by the sEMG signal requires one to specially extract and calculate for complex sEMG features. Moreover, due to the huge amount of calculation and individualized difference, the real-time control of the exoskeleton robot cannot be realized. Therefore, this paper proposes a novel method using an improved detection algorithm to recognize limb joint motion and detect joint angle based on sEMG images, aiming to obtain a high-security and fast-processing action recognition strategy. In this paper, MobileNetV2 combined the Ghost module as the feature extraction network to obtain the pretraining model. Then, the target detection network Yolo-V4 was used to estimate the six movement categories of the upper limb joints and to predict the joint movement angles. The experimental results showed that the proposed motion recognition methods were available. Every 100 pictures can be accurately identified in approximately 78 pictures, and the processing speed of every single picture on the PC side was 17.97 ms. For the train data, the [email protected] could reach 82.3%, and [email protected]–0.95 could reach 0.42; for the verification data, the average recognition accuracy could reach 80.7%.


2021 ◽  
Author(s):  
Vishnu Mani Hema ◽  
Seetharam Krishnapuram ◽  
Premkumar S ◽  
Rohit Surya K ◽  
Kunal Yadav ◽  
...  

2021 ◽  
Vol 8 (3) ◽  
pp. 292-296
Author(s):  
Aulia Salwa Alfaina ◽  
Rahmi Isma Asmara Putri ◽  
Hari Peni Julianti ◽  
Trianggoro Budisulistyo ◽  
Rifky Ismail

Background: Upper limb weakness is the most disability caused by stroke. The availability of physiotherapists is still limited in Indonesia. The exoskeleton robot is a developing technology that involve in stroke rehabilitation therapy. Objective: To evaluate the effectiveness of exoskeleton robot-assisted therapy on improving muscle strength of patients after stroke. Methods: An experimental study with two groups pre-test and post-test design carried out using consecutive sampling among outpatient stroke patients in Diponegoro National Hospital (RSND) and William Booth Hospital (RSWB), Semarang. Patients in the robotic group (RG) (n=8) received 16 training sessions. Each session consists of 30 passive and ten active-weighted elbow flexion-extension with the exoskeleton robot. Meanwhile, the control group (CG) (n=8) received equivalent training of conventional therapy. The primary outcome of muscle strength was measured by Manual Muscle Testing (MMT) and handheld dynamometer. Pre and post-test MMT score data in each group were analyzed by Wilcoxon test, while handheld dynamometer score data were analyzed by paired t-test. Data between the two groups were analyzed by Mann-Whitney test and unpaired t-test. Results: Significant improvements were shown for the MMT score (RG: p=0.014, CG: p=0.034). There were significant handheld dynamometer score improvements on muscle strength for elbow flexor and extensor in RG (p = 0.008 and p = 0.005 respectively) and in CG (p=0.036 and p=0.008 respectively). No significant differences for MMT and handheld dynamometer score between the two groups. Conclusion: The exoskeleton robot-assisted therapy was as effective as conventional therapy for improving muscle strength in stroke patients.


Sign in / Sign up

Export Citation Format

Share Document