Based on genetic algorithm and BP network to fault diagnosis of fermentation process

Author(s):  
Chang Jing ◽  
Wang Guicheng ◽  
Wang Yong ◽  
Zhang Zhansheng ◽  
Xu Xinhe
2010 ◽  
Vol 29-32 ◽  
pp. 1543-1549 ◽  
Author(s):  
Jie Wei ◽  
Hong Yu ◽  
Jin Li

Three-ratio of the IEC is a convenient and effective approach for transformer fault diagnosis in the dissolved gas analysis (DGA). Fuzzy theory is used to preprocess the three-ratio for its boundary that is too absolute. As the same time, an improved quantum genetic algorithm IQGA (QGASAC) is used to optimize the weight and threshold of the back propagation (BP). The local and global searching ability of the QGASAC approach is utilized to find the BP optimization solution. It can overcome the slower convergence velocity and hardly getting the optimization of the BP neural network. So, aiming at the shortcoming of BP neural network and three-ratio, blurring the boundary of the gas ratio and the QGASAC algorithm is introduced to optimize the BP network. Then the QGASAC-IECBP method is proposed in this paper. Experimental results indicate that the proposed algorithm in this paper that both convergence velocity and veracity are all improved to some extent. And in this paper, the proposed algorithm is robust and practical.


Author(s):  
Qiao Sun ◽  
Xiaolei Li ◽  
Baoyun Xu

Abstract This paper describes the application of neural networks to gearbox fault diagnosis. In order to increase learning speed of BP network, a modified learning algorithm was presented. Considering of the difficulty of choosing neural networks’ architecture, genetic algorithm was employed. The discussion of the effect of hidden layer nodes shows that with the increase of the number of nodes, the learning speed increase also yet result in poor generalization ability. The test of fault tolerance ability tells that neural networks have ‘bench type’ tolerance ability. This ensures that when signals were contaminated by noise or feature extraction methods were not effective, the result can still be acceptable. To test the performance of the application of neural networks on gearbox fault diagnosis, experiments of single fault and multi-faults were both implemented and diagnosed by neural networks. The results were satisfied.


Author(s):  
Jiatang Cheng ◽  
Yan Xiong

Background: The effective diagnosis of wind turbine gearbox fault is an important means to ensure the normal and stable operation and avoid unexpected accidents. Methods: To accurately identify the fault modes of the wind turbine gearbox, an intelligent diagnosis technology based on BP neural network trained by the Improved Quantum Particle Swarm Optimization Algorithm (IQPSOBP) is proposed. In IQPSO approach, the random adjustment scheme of contractionexpansion coefficient and the restarting strategy are employed, and the performance evaluation is executed on a set of benchmark test functions. Subsequently, the fault diagnosis model of the wind turbine gearbox is built by using IQPSO algorithm and BP neural network. Results: According to the evaluation results, IQPSO is superior to PSO and QPSO algorithms. Also, compared with BP network, BP network trained by Particle Swarm Optimization (PSOBP) and BP network trained by Quantum Particle Swarm Optimization (QPSOBP), IQPSOBP has the highest diagnostic accuracy. Conclusion: The presented method provides a new reference for the fault diagnosis of wind turbine gearbox.


2013 ◽  
Vol 756-759 ◽  
pp. 3804-3808
Author(s):  
Zhi Mei Duan ◽  
Jia Tang Cheng

In order to improve the accuracy of fault diagnosis of power transformer, in this paper, a method is proposed that optimize the weight of BP neural network by adaptive mutation particle swarm optimization (AMPSO). According to the characteristic of transformer fault, the optimized neural network is used to diagnose fault of the power transformer. Individual particles action is amended by this algorithm and local minima problems of the standard PSO and BP network are overcooked. The experimental results show that, the method can classify transformer faults, and effectively improve the fault recognition rate.


Sign in / Sign up

Export Citation Format

Share Document