Approximate Minimum Enclosing Ball algorithm with smaller core sets for binary Support Vector Machine

Author(s):  
Yongqing Wang ◽  
Yan Li ◽  
Liang Chang
2021 ◽  
Vol 11 (10) ◽  
pp. 4657
Author(s):  
Atif Rizwan ◽  
Naeem Iqbal ◽  
Rashid Ahmad ◽  
Do-Hyeun Kim

The generalization error of conventional support vector machine (SVM) depends on the ratio of two factors; radius and margin. The traditional SVM aims to maximize margin but ignore minimization of radius, which decreases the overall performance of the SVM classifier. However, different approaches are developed to achieve a trade-off between the margin and radius. Still, the computational cost of all these approaches is high due to the requirements of matrix transformation. Furthermore, a conventional SVM tries to set the best hyperplane between classes, and due to some robust kernel tricks, an SVM is used in many non-linear and complex problems. The configuration of the best hyperplane between classes is not effective; therefore, it is required to bind a class within its limited area to enhance the performance of the SVM classifier. The area enclosed by a class is called its Minimum Enclosing Ball (MEB), and it is one of the emerging problems of SVM. Therefore, a robust solution is needed to improve the performance of the conventional SVM to overcome the highlighted issues. In this research study, a novel weighted radius SVM (WR-SVM) is proposed to determine the tighter bounds of MEB. The proposed solution uses a weighted mean to find tighter bounds of radius, due to which the size of MEB decreases. Experiments are conducted on nine different benchmark datasets and one synthetic dataset to demonstrate the effectiveness of our proposed model. The experimental results reveal that the proposed WR-SVM significantly performed well compared to the conventional SVM classifier. Furthermore, experimental results are compared with F-SVM and traditional SVM in terms of classification accuracy to demonstrate the significance of the proposed WR-SVM.


2020 ◽  
Author(s):  
V Vasilevska ◽  
K Schlaaf ◽  
H Dobrowolny ◽  
G Meyer-Lotz ◽  
HG Bernstein ◽  
...  

2019 ◽  
Vol 15 (2) ◽  
pp. 275-280
Author(s):  
Agus Setiyono ◽  
Hilman F Pardede

It is now common for a cellphone to receive spam messages. Great number of received messages making it difficult for human to classify those messages to Spam or no Spam.  One way to overcome this problem is to use Data Mining for automatic classifications. In this paper, we investigate various data mining techniques, named Support Vector Machine, Multinomial Naïve Bayes and Decision Tree for automatic spam detection. Our experimental results show that Support Vector Machine algorithm is the best algorithm over three evaluated algorithms. Support Vector Machine achieves 98.33%, while Multinomial Naïve Bayes achieves 98.13% and Decision Tree is at 97.10 % accuracy.


2011 ◽  
Vol 131 (8) ◽  
pp. 1495-1501
Author(s):  
Dongshik Kang ◽  
Masaki Higa ◽  
Hayao Miyagi ◽  
Ikugo Mitsui ◽  
Masanobu Fujita ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document