Active Vibration Suppression of Thin Cylindrical Shells Laminated with Photostrictive Actuators via Self-organizing Fuzzy Sliding Mode Control

Author(s):  
Rongbo He ◽  
Shijie Zheng
2018 ◽  
Vol 37 (4) ◽  
pp. 1079-1096 ◽  
Author(s):  
Yunmei Fang ◽  
Juntao Fei ◽  
Tongyue Hu

An adaptive backstepping fuzzy sliding mode control is proposed to approximate the unknown system dynamics for a cantilever beam in this paper. The adaptive backstepping fuzzy sliding mode control is developed by combining the backstepping method with adaptive fuzzy strategy, where backstepping design approach is used to drive the trajectory tracking errors to converge to zero rapidly with global asymptotic stability and fuzzy logic system is designed to approximate the unknown nonlinear function in the adaptive backstepping fuzzy sliding mode control. The proposed backstepping controllers can ensure proper tracking of the reference trajectory, and impose a desired dynamic behavior, giving robustness and insensitivity to parameter variations. Numerical simulation for cantilever beam is investigated to verify the effectiveness of the proposed adaptive backstepping fuzzy sliding mode control scheme and demonstrate the satisfactory vibration suppression performance.


2016 ◽  
Vol 138 (4) ◽  
Author(s):  
Rongbo He ◽  
Shijie Zheng ◽  
Liyong Tong

In this paper, a novel multipiece actuator configuration is first proposed. This configuration exhibits several advantages over the existing ones, such as: (1) the ability to overcome the deficiency of one-way actuation of PbLaZrTi (PLZT) actuators and (2) all of the actuators in this configuration being placed on the inner surfaces of a thin cylindrical shell and the removal of extra electrical wires between the end surfaces of the actuators. A new index of modal control factors is defined, and an optimization method for allocating actuator is proposed. By using the proposed method, the PLZT actuators can be located in an optimum position. Moreover, in view of the nonlinear and time-variant characteristics of photostrictive actuators, a self-organizing fuzzy sliding mode control (SOFSMC) method is established to attenuate multimodal vibration of photo-electric laminated thin cylindrical shells. A multilevel sliding mode surface is defined as fuzzy input and the SOFSMC method is used to infer the applied light intensity. Its control rule bank can be developed and adjusted continuously via online learning. In addition, using fuzzy sliding mode, the chatter inherent in conventional sliding mode control is therefore managed effectively while ensuring sliding mode behavior. Case studies demonstrate that the proposed approach can efficiently suppress multimodal vibration of photo-electric laminated thin cylindrical shells. It is also founded that SOFSMC can achieve better control effect than fuzzy neural network control (FNNC).


2018 ◽  
Vol 41 (2) ◽  
pp. 433-446 ◽  
Author(s):  
Satyam Paul ◽  
Wen Yu ◽  
Xiaoou Li

In terms of vibrations along bidirectional earthquake forces, several problems are faced when modelling and controlling the structure of a building, such as lateral-torsional vibration, uncertainties surrounding the rigidity and the difficulty of estimating damping forces. In this paper, we use a fuzzy logic model to identify and compensate the uncertainty which does not require an exact model of the building structure. To attenuate bidirectional vibration, a novel discrete-time sliding mode control is proposed. This sliding mode control has time-varying gain and is combined with fuzzy sliding mode control in order to reduce the chattering of the sliding mode control. We prove that the closed-loop system is uniformly stable using Lyapunov stability analysis. We compare our fuzzy sliding mode control with the traditional controllers: proportional–integral–derivative and sliding mode control. Experimental results show significant vibration attenuation with our fuzzy sliding mode control and horizontal-torsional actuators. The proposed control system is the most efficient at mitigating bidirectional and torsional vibrations.


Sign in / Sign up

Export Citation Format

Share Document