Performance analysis of Kalman filter, fuzzy Kalman filter and wind driven optimized Kalman filter for tracking applications

Author(s):  
Shaik Khashirunnisa ◽  
B. Keerti Chand ◽  
B. Leela Kumari
2021 ◽  
Author(s):  
Nalini Arasavali ◽  
Sasibhushanarao Gottapu

Abstract Kalman filter (KF) is a widely used navigation algorithm, especially for precise positioning applications. However, the exact filter parameters must be defined a priori to use standard Kalman filters for coping with low error values. But for the dynamic system model, the covariance of process noise is a priori entirely undefined, which results in difficulties and challenges in the implementation of the conventional Kalman filter. Kalman Filter with recursive covariance estimation applied to solve those complicated functional issues, which can also be used in many other applications involving Kalaman filtering technology, a modified Kalman filter called MKF-RCE. While this is a better approach, KF with SAR tuned covariance has been proposed to resolve the problem of estimation for the dynamic model. The data collected at (x: 706970.9093 m, y: 6035941.0226 m, z: 1930009.5821 m) used to illustrate the performance analysis of KF with recursive covariance and KF with computational intelligence correction by means of SAR (Search and Rescue) tuned covariance, when the covariance matrices of process and measurement noises are completely unknown in advance.


2016 ◽  
Vol 61 (12) ◽  
pp. 4014-4019 ◽  
Author(s):  
Quanbo Ge ◽  
Teng Shao ◽  
Zhansheng Duan ◽  
Chenglin Wen

2021 ◽  
Author(s):  
Praveenkumar Babu ◽  
Eswaran Parthasarathy

<div>In the presence of uncertainty, one of the most difficult issues for tracking in control systems is to estimate the accuracy and precision of hidden variables. Kalman filter is considered as the widely adapted estimation algorithm for tracking applications. However, tracking of multiple objects is still a challenging task to achieve better results for prediction and correction. To solve this problem, a multi-dimensional Kalman filter is proposed using state estimations for tracking multiple objects. This paper also presents the performance analysis of proposed tracking model for linear measurements. The steady?state and covariance equations are derived and their co-efficients are updated. The multi-dimensional Kalman filter is evaluated mathematically for linear dynamic systems. The path tracking based on Kalman filter and multi-dimensional Kalman filter is also analyzed. The true and filtered responses of our proposed filtering algorithm for multiple object tracking are observed. The output covariance produces steady state values after four number of samples. The simulation results shows that the performance of our proposed filtering algorithm is 2x times effective than conventional Kalman filter for objects moving in linear motion and proves that proposed filter is suitable for real?time implementation.</div><div><br> </div>


Sign in / Sign up

Export Citation Format

Share Document