Short-Term Photovoltaic Output Forecasting Based on Multivariable Phase Space Reconstruction and Support Vector Regression

Author(s):  
Chunxia Dou ◽  
Zhongwei Bian ◽  
Tengfei Zhang
2021 ◽  
pp. 2150245
Author(s):  
Xiaoquan Wang ◽  
Wenjun Li ◽  
Chaoying Yin ◽  
Shaoyu Zeng ◽  
Peng Liu

This study proposes a short-term traffic flow prediction approach based on multiple traffic flow basic parameters, in which the chaos theory and support vector regression are utilized. First, a high-dimensional variable space can be obtained according to the traffic flow fundamental function. Then, a maximum conditional entropy method is proposed to determine the embedding dimension. And multiple time series are reconstructed based on the phase space reconstruction theory using the time delay obtained by mutual information method and the embedding dimension captured by the maximum conditional entropy method. Finally, the reconstructed phase space is used as the input and the support vector regression optimized by the genetic algorithm is utilized to predict the traffic flow. Numerical experiments are performed and the results show that the approach proposed has strong fitting capability and better prediction accuracy.


2013 ◽  
Vol 300-301 ◽  
pp. 842-847 ◽  
Author(s):  
Cai Hong Zhu ◽  
Ling Ling Li ◽  
Jun Hao Li ◽  
Jian Sen Gao

The wind speed forecast is the basis of the wind power forecast. The wind speed has the characteristics of random non-smooth so obviously that its precise forecast is extremely difficult. Therefore, a forecasting method based on the theory of chaotic phase-space reconstruction and SVM was put forward in this paper and a forecasting model of Chaotic Support Vector Machine was built. In order to improve the precision and generalization ability, the key parameters in the phase space reconstruction and the key parameters of SVM were carried out joint optimization by using particle swarm algorithm in the paper. Then the optimal parameters were brought into the forecasting model to forecast short-term wind speed. The above method was applied to wind speed forecast of a wind farm in Inner Mongolia, China. In the experiments of computer simulation, the absolute percentage error of forecasting results was only 12.51%, which showed this method was effective for short-term wind speed forecast.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5309
Author(s):  
Jose R. Cedeño González ◽  
Juan J. Flores ◽  
Claudio R. Fuerte-Esquivel ◽  
Boris A. Moreno-Alcaide

Load forecasting provides essential information for engineers and operators of an electric system. Using the forecast information, an electric utility company’s engineers make informed decisions in critical scenarios. The deregulation of energy industries makes load forecasting even more critical. In this article, the work we present, called Nearest Neighbors Load Forecasting (NNLF), was applied to very short-term load forecasting of electricity consumption at the national level in Mexico. The Energy Control National Center (CENACE—Spanish acronym) manages the National Interconnected System, working in a Real-Time Market system. The forecasting methodology we propose provides the information needed to solve the problem known as Economic Dispatch with Security Constraints for Multiple Intervals (MISCED). NNLF produces forecasts with a 15-min horizon to support decisions in the following four electric dispatch intervals. The hyperparameters used by Nearest Neighbors are tuned using Differential Evolution (DE), and the forecaster model inputs are determined using phase-space reconstruction. The developed models also use exogenous variables; we append a timestamp to each input (i.e., delay vector). The article presents a comparison between NNLF and other Machine Learning techniques: Artificial Neural Networks and Support Vector Regressors. NNLF outperformed those other techniques and the forecasting system they currently use.


Sign in / Sign up

Export Citation Format

Share Document