Near Time-Optimal Flexible-Joint Trajectory Planning Algorithm for Robotic Manipulators

Author(s):  
Markus Ruf
2020 ◽  
Vol 17 (3) ◽  
pp. 172988142092004
Author(s):  
Yong-Lin Kuo ◽  
Chun-Chen Lin ◽  
Zheng-Ting Lin

This article presents a dual-optimization trajectory planning algorithm, which consists of the optimal path planning and the optimal motion profile planning for robot manipulators, where the path planning is based on parametric curves. In path planning, a virtual-knot interpolation is proposed for the paths required to pass through all control points, so the common curves, such as Bézier curves and B-splines, can be incorporated into it. Besides, an optimal B-spline is proposed to generate a smoother and shorter path, and this scheme is especially suitable for closed paths. In motion profile planning, a generalized formulation of time-optimal velocity profiles is proposed, which can be implemented to any types of motion profiles with equality and inequality constraints. Also, a multisegment cubic velocity profile is proposed by solving a multiobjective optimization problem. Furthermore, a case study of a dispensing robot is investigated through the proposed dual-optimization algorithm applied to numerical simulations and experimental work.


2020 ◽  
Vol 5 (2) ◽  
pp. 938-945 ◽  
Author(s):  
Alessandro Palleschi ◽  
Riccardo Mengacci ◽  
Franco Angelini ◽  
Danilo Caporale ◽  
Lucia Pallottino ◽  
...  

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yi Liu ◽  
Meng Joo Er ◽  
Chen Guo

Purpose The purpose of this paper is to propose an efficient path and trajectory planning method to solve online robotic multipoint assembly. Design/methodology/approach A path planning algorithm called policy memorized adaptive dynamic programming (PM-ADP) combines with a trajectory planning algorithm called adaptive elite genetic algorithm (AEGA) for online time-optimal path and trajectory planning. Findings Experimental results and comparative study show that the PM-ADP is more efficient and accurate than traditional algorithms in a smaller assembly task. Under the shortest assembly path, AEGA is used to plan the time-optimal trajectories of the robot and be more efficient than GA. Practical implications The proposed method builds a new online and efficient path planning arithmetic to cope with the uncertain and dynamic nature of the multipoint assembly path in the Cartesian space. Moreover, the optimized trajectories of the joints can make the movement of the robot continuously and efficiently. Originality/value The proposed method is a combination of time-optimal path planning with trajectory planning. The traveling salesman problem model of assembly path is established to transfer the assembly process into a Markov decision process (MDP). A new dynamic programming (DP) algorithm, termed PM-ADP, which combines the memorized policy and adaptivity, is developed to optimize the shortest assembly path. GA is improved, termed AEGA, which is used for online time-optimal trajectory planning in joints space.


1987 ◽  
Vol 109 (2) ◽  
pp. 88-96 ◽  
Author(s):  
S. Singh ◽  
M. C. Leu

The problem of optimal control of robotic manipulators is dealt with in two stages: (1) optimal trajectory planning, which is performed off-line and results in the prescription of the position and velocity of each link as a function of time along a “given” path and (2) on-line trajectory tracking, during which the manipulator is guided along the planned trajectory using a feedback control algorithm. In order to obtain a general trajectory planning algorithm which could account for various constraints and performance indices, the technique of dynamic programming is adopted. It is shown that for a given path, this problem is reduced to a search over the velocity of one moving manipulator link. The design of the algorithm for optimal trajectory planning and the relevant computational issues are discussed. Simulations are performed to test the effectiveness of this method. The use of this algorithm in conjunction with an on-line controller is also presented.


2011 ◽  
Vol 110-116 ◽  
pp. 1547-1555
Author(s):  
Mohammad Hassan Ghasemi ◽  
Navvab Kashiri ◽  
Morteza Dardel ◽  
Mohammad Hadi Pashaei

here, a time optimal control scheme for trajectory planning of kinematically manipulators subjects to actuator torque limits is proposed by using the phase plane analysis and linear programming technique. In addition, the limit on joint velocities is considered. In order to affect the constraint of joint velocities, this constraint is converted to constraint on joint acceleration and it is affected linear programming problem as an additional constraint. Also, an explicit algorithm for finding the switching points is presented. To this end, some simulations are given to demonstrate the efficiency of proposed trajectory planning algorithm.


2013 ◽  
Vol 470 ◽  
pp. 658-662
Author(s):  
Yong Pan Xu ◽  
Ying Hong

In order to improve the efficiency and reduce the vibration of Palletizing Robot, a new optimal trajectory planning algorithm is proposed. This algorithm is applied to the trajectory planning of Palletizing manipulators. The S-shape acceleration and deceleration curve is adopted to interpolate joint position sequences. Considering constraints of joint velocities, accelerations and jerks, the traveling time of the manipulator is minimized. The joint interpolation confined by deviation is used to approximate the straight path, and the deviation is decreased significantly by adding only small number of knots. Traveling time is solved by using quintic polynomial programming strategy between the knots, and then time-jerk optimal trajectories which satisfy constraints are planned. The results show that the method can avoid the problem of manipulator singular points and improve the palletize efficiency.


Robotica ◽  
2017 ◽  
Vol 35 (12) ◽  
pp. 2400-2417 ◽  
Author(s):  
Ming-Yong Zhao ◽  
Xiao-Shan Gao ◽  
Qiang Zhang

SUMMARYThis paper focuses on the problem of robust time-optimal trajectory planning of robotic manipulators to track a given path under a probabilistic limited actuation, that is, the probability for the actuation to be limited is no less than a given bound κ. We give a general and practical method to reduce the probabilistic constraints to a set of deterministic constraints and show that the deterministic constraints are equivalent to a set of linear constraints under certain conditions. As a result, the original problem is reduced to a linear optimal control problem which can be solved with linear programming in polynomial time. In the case of κ = 1, the original problem is proved to be equivalent to the linear optimal control problem. Overall, a very general, practical, and efficient algorithm is given to solve the above problem and numerical simulation results are used to show the effectiveness of the method.


Sign in / Sign up

Export Citation Format

Share Document