Fast Updating Energy Management of Hybrid Electrical Vehicles

Author(s):  
Florian Meier ◽  
Junpeng Deng ◽  
Luigi del Re
2015 ◽  
Vol 40 (45) ◽  
pp. 15823-15833 ◽  
Author(s):  
Mona Ibrahim ◽  
Samir Jemei ◽  
Geneviève Wimmer ◽  
Nadia Yousfi Steiner ◽  
Célestin C. Kokonendji ◽  
...  

2013 ◽  
Vol 26 (7) ◽  
pp. 1772-1779 ◽  
Author(s):  
Javier Solano Martínez ◽  
Jérôme Mulot ◽  
Fabien Harel ◽  
Daniel Hissel ◽  
Marie-Cécile Péra ◽  
...  

2012 ◽  
Vol 190 ◽  
pp. 192-207 ◽  
Author(s):  
Javier Solano Martínez ◽  
Robert I. John ◽  
Daniel Hissel ◽  
Marie-Cécile Péra

Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4179
Author(s):  
Mohsen Banaei ◽  
Fatemeh Ghanami ◽  
Mehdi Rafiei ◽  
Jalil Boudjadar ◽  
Mohammad-Hassan Khooban

All-electric ships, and especially the hybrid ones with diesel generators and batteries, have attracted the attention of maritime industry in the last years due to their less emission and higher efficiency. The variant emission policies in different sailing areas and the impact of physical and environmental phenomena on ships energy consumption are two interesting and serious concepts in the maritime issues. In this paper, an efficient energy management strategy is proposed for a hybrid vessel that can effectively consider the emission policies and apply the impacts of ship resistant, wind direction and sea state on the ships propulsion. In addition, the possibility and impact of charging and discharging the carried electrical vehicles’ batteries by the ship is investigated. All mentioned matters are mathematically formulated and a general model of the system is extracted. The resulted model and real data are utilized for the proposed energy management strategy. A genetic algorithm is used in MATLAB software to obtain the optimal solution for a specific trip of the ship. Simulation results confirm the effectiveness of the proposed energy management method in economical and reliable operation of the ship considering the different emission control policies and weather condition impacts.


2021 ◽  
Vol 13 (24) ◽  
pp. 13826
Author(s):  
Xuebo Liu ◽  
Yingying Wu ◽  
Hongyu Wu

Rooftop photovoltaics (PV) and electrical vehicles (EV) have become more economically viable to residential customers. Most existing home energy management systems (HEMS) only focus on the residential occupants’ thermal comfort in terms of indoor temperature and humidity while neglecting their other behaviors or concerns. This paper aims to integrate residential PV and EVs into the HEMS in an occupant-centric manner while taking into account the occupants’ thermal comfort, clothing behaviors, and concerns on the state-of-charge (SOC) of EVs. A stochastic adaptive dynamic programming (ADP) model was proposed to optimally determine the setpoints of heating, ventilation, air conditioning (HVAC), occupant’s clothing decisions, and the EV’s charge/discharge schedule while considering uncertainties in the outside temperature, PV generation, and EV’s arrival SOC. The nonlinear and nonconvex thermal comfort model, EV SOC concern model, and clothing behavior model were holistically embedded in the ADP-HEMS model. A model predictive control framework was further proposed to simulate a residential house under the time of use tariff, such that it continually updates with optimal appliance schedules decisions passed to the house model. Cosimulations were carried out to compare the proposed HEMS with a baseline model that represents the current operational practice. The result shows that the proposed HEMS can reduce the energy cost by 68.5% while retaining the most comfortable thermal level and negligible EV SOC concerns considering the occupant’s behaviors.


Sign in / Sign up

Export Citation Format

Share Document