Visual Tracking Control of Aerial Robotic Systems with Adaptive Depth Estimation

Author(s):  
N. Metni ◽  
T. Hamel ◽  
F. Derkx
2019 ◽  
Vol 356 (12) ◽  
pp. 6255-6279 ◽  
Author(s):  
Fujie Wang ◽  
Zhi Liu ◽  
C.L. Philip Chen ◽  
Yun Zhang

2021 ◽  
Vol 11 (13) ◽  
pp. 6224
Author(s):  
Qisong Zhou ◽  
Jianzhong Tang ◽  
Yong Nie ◽  
Zheng Chen ◽  
Long Qin

The cable-driven hyper-redundant snake-like manipulator (CHSM) inspired by the biomimetic structure of vertebrate muscles and tendons, which consists of numerous joint units connected adjacently driven by elastic materials with hyper-redundant DOF, performs flexible kinematic skills and competitive compound capability under complicated working circumstances. Nevertheless, the drawback of lacking the ability to perceive the environment to perform intelligently in complex scenarios leaves a lot to be improved, which is the original intention to introduce visual tracking feedback acting as an instructor. In this paper, a cable-driven snake-like robotic arm combined with a visual tracking technique is introduced. A visual tracking approach based on dual correlation filter is designed to guide the CHSM in detecting the target and tracing after its trajectory. Specifically, it contains an adaptive optimization for the scale variation of the tracking target via pyramid sampling. For the CHSM, an explicit kinematics model is derived from its specific geometry relationships and followed by a simplification for the inverse kinematics based on some assumption or limitation. A control scheme is brought up to combine the kinematics with visual tracking via the processing tracking errors. The experimental results with a practical prototype validate the availability of the proposed compound control method with the derived kinematics model.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Xiaoyi Long ◽  
Zheng He ◽  
Zhongyuan Wang

This paper suggests an online solution for the optimal tracking control of robotic systems based on a single critic neural network (NN)-based reinforcement learning (RL) method. To this end, we rewrite the robotic system model as a state-space form, which will facilitate the realization of optimal tracking control synthesis. To maintain the tracking response, a steady-state control is designed, and then an adaptive optimal tracking control is used to ensure that the tracking error can achieve convergence in an optimal sense. To solve the obtained optimal control via the framework of adaptive dynamic programming (ADP), the command trajectory to be tracked and the modified tracking Hamilton-Jacobi-Bellman (HJB) are all formulated. An online RL algorithm is the developed to address the HJB equation using a critic NN with online learning algorithm. Simulation results are given to verify the effectiveness of the proposed method.


2008 ◽  
Vol 41 (2) ◽  
pp. 11702-11707 ◽  
Author(s):  
Yaonan Wang ◽  
Yi Zuo ◽  
Lihong Huang ◽  
Chunsheng Li

2020 ◽  
Vol 50 (1) ◽  
pp. 361-373 ◽  
Author(s):  
Kaixiang Zhang ◽  
Jian Chen ◽  
Yang Li ◽  
Xinfang Zhang

Robotica ◽  
2021 ◽  
pp. 1-20
Author(s):  
Shubo Liu ◽  
Guoquan Liu ◽  
Shengbiao Wu

Abstract This study is concerned with the tracking control problem for nonlinear uncertain robotic systems in the presence of unknown actuator nonlinearities. A novel adaptive sliding controller is designed based on a robust disturbance observer without any prior knowledge of actuator nonlinearities and system dynamics. The proposed control strategy can guarantee that the tracking error eventually converges to an arbitrarily small neighborhood of zero. Simulation results are included to demonstrate the effectiveness and superiority of the proposed strategy.


Sign in / Sign up

Export Citation Format

Share Document