Image-Based Visual Tracking Control of Hand-Eye Robot for Moving Target Object

2009 ◽  
Vol 129 (9) ◽  
pp. 930-937 ◽  
Author(s):  
Masahide Ito ◽  
Masaaki Shibata
2021 ◽  
Vol 11 (13) ◽  
pp. 6224
Author(s):  
Qisong Zhou ◽  
Jianzhong Tang ◽  
Yong Nie ◽  
Zheng Chen ◽  
Long Qin

The cable-driven hyper-redundant snake-like manipulator (CHSM) inspired by the biomimetic structure of vertebrate muscles and tendons, which consists of numerous joint units connected adjacently driven by elastic materials with hyper-redundant DOF, performs flexible kinematic skills and competitive compound capability under complicated working circumstances. Nevertheless, the drawback of lacking the ability to perceive the environment to perform intelligently in complex scenarios leaves a lot to be improved, which is the original intention to introduce visual tracking feedback acting as an instructor. In this paper, a cable-driven snake-like robotic arm combined with a visual tracking technique is introduced. A visual tracking approach based on dual correlation filter is designed to guide the CHSM in detecting the target and tracing after its trajectory. Specifically, it contains an adaptive optimization for the scale variation of the tracking target via pyramid sampling. For the CHSM, an explicit kinematics model is derived from its specific geometry relationships and followed by a simplification for the inverse kinematics based on some assumption or limitation. A control scheme is brought up to combine the kinematics with visual tracking via the processing tracking errors. The experimental results with a practical prototype validate the availability of the proposed compound control method with the derived kinematics model.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2982 ◽  
Author(s):  
Bongjae Kim ◽  
Hong Min ◽  
Junyoung Heo ◽  
Jinman Jung

Recently, various technologies for utilizing unmanned aerial vehicles have been studied. Drones are a kind of unmanned aerial vehicle. Drone-based mobile surveillance systems can be applied for various purposes such as object recognition or object tracking. In this paper, we propose a mobility-aware dynamic computation offloading scheme, which can be used for tracking and recognizing a moving object on the drone. The purpose of the proposed scheme is to reduce the time required for recognizing and tracking a moving target object. Reducing recognition and tracking time is a very important issue because it is a very time critical job. Our dynamic computation offloading scheme considers both the dwell time of the moving target object and the network failure rate to estimate the response time accurately. Based on the simulation results, our dynamic computation offloading scheme can reduce the response time required for tracking the moving target object efficiently.


2018 ◽  
Vol 51 (22) ◽  
pp. 471-478
Author(s):  
Hrishik Mishra ◽  
Marco De Stefano ◽  
Alessandro Massimo Giordano ◽  
Christian Ott

Sign in / Sign up

Export Citation Format

Share Document