A multi-component spatially-distributed model of two-phase flow for estimation and control of fuel cell water dynamics

Author(s):  
B.A. McCain ◽  
A.G. Stefanopoulou ◽  
I.V. Kolmanovsky
Energy ◽  
2021 ◽  
Vol 218 ◽  
pp. 119543
Author(s):  
Jingxian Chen ◽  
Peihang Xu ◽  
Jie Lu ◽  
Tiancheng Ouyang ◽  
Chunlan Mo

2017 ◽  
Vol 348 ◽  
pp. 212-218 ◽  
Author(s):  
S.M.H. Hashemi ◽  
M. Neuenschwander ◽  
P. Hadikhani ◽  
M.A. Modestino ◽  
D. Psaltis

Author(s):  
Casey Loughrin

Heater drain systems in fossil and nuclear power plants have proven to be among the most complex systems to design due to the occurrence of two–phase flow phenomena. The overall performance of heater drain systems directly relates to proper sizing and design of the piping and control valves. Proper sizing is highly dependent upon accurate and conservative calculation of two-phase flow pressure losses. This paper outlines the various options of solution methods available to the engineer and details one possible method which is simple, yet adequate, and based on the homogeneous equilibrium model (HEM) for two phase flow for calculation of heater drain system performance. General comparisons are made to the more complex multi-fluid models, flow regime considerations, and non-equilibrium models.


Author(s):  
Ulf Jakob F. Aarsnes ◽  
Florent Di Meglio ◽  
Steinar Evje ◽  
Ole Morten Aamo

We present a simplified drift-flux model for gas-liquid flow in pipes. The model is able to handle single and two-phase flow thanks to a particular choice of empirical slip law. A presented implicit numerical scheme can be used to rapidly solve the equations with good accuracy. Besides, it remains simple enough to be amenable to mathematical and control-oriented analysis. In particular, we present an analysis of the steady-states of the model that yields important considerations for drilling practitioners. This includes the identification of 4 distinct operating regimes of the system, and a discussion on the occurrence of slugging in underbalanced drilling.


Sign in / Sign up

Export Citation Format

Share Document