Mobile robot based odor source localization via particle filter

Author(s):  
Ji-Gong Li ◽  
Qing-Hao Meng ◽  
Fei Li ◽  
Ming Zeng ◽  
Dorin Popescu
2013 ◽  
Vol 441 ◽  
pp. 796-800
Author(s):  
Chun Shu Li ◽  
Zhi Hua Yang ◽  
Gen Qun Cui ◽  
Bo Jin

Aiming at the odor source localization in an obstacle-filled wind-varying indoor environment, a new method based odor source localization algorithm for a single mobile robot is proposed. With the information of the wind and the concentration gradient, Wasps can find odor source in a short time. However, it is very difficult for mobile robots to mimic the behaviors of wasps exactly. So, besides the bionics, BP neural network is adopted for the mobile robot to find the odor source. The control strategies for the plume-tracing mobile robot are proposed which include the intelligent plume-tracing algorithm and the collision avoidance algorithm based on improved potential grid method. The algorithms were integrated to control the robot trace plumes in obstructed indoor environments. Experimental results have demonstrated the capability of this kind of plume-tracing mobile robot.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Ping Jiang ◽  
Yuzhen Wang ◽  
Aidong Ge

In order to take full advantage of the multisensor information, a MIMO fuzzy control system based on semitensor product (STP) is set up for mobile robot odor source localization (OSL). Multisensor information, such as vision, olfaction, laser, wind speed, and direction, is the input of the fuzzy control system and the relative searching strategies, such as random searching (RS), nearest distance-based vision searching (NDVS), and odor source declaration (OSD), are the outputs. Fuzzy control rules with algebraic equations are given according to the multisensor information via STP. Any output can be updated in the proposed fuzzy control system and has no influence on the other searching strategies. The proposed MIMO fuzzy control scheme based on STP can reach the theoretical system of the mobile robot OSL. Experimental results show the efficiency of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document