scholarly journals Stability analysis of parabolic linear PDEs with two spatial dimensions using Lyapunov method and SOS

Author(s):  
Evgeny Meyer ◽  
Matthew M. Peet
2009 ◽  
Vol 18 (14) ◽  
pp. 2155-2158 ◽  
Author(s):  
ASHER YAHALOM

To the ordinary human it is obvious that there is a clear distinction between the spatial dimensions, in which one can go either way, and the temporal dimension, in which one seems only to move forward. But the uniqueness of time is also rooted in the standard presentation of general relativity, in which the metric of space–time is locally Lorentzian, i.e. ημν = diag (1, -1, -1, -1). This is presented as an independent axiom of the theory, which cannot be deduced. In this essay I will claim otherwise. I will show that the existence of time should not be enforced on the gravitational theory of general relativity but rather should be deduced from it. The method of choice is linear stability analysis of flat space–times.


2017 ◽  
Vol 238 ◽  
pp. 67-75 ◽  
Author(s):  
Mingwen Zheng ◽  
Lixiang Li ◽  
Haipeng Peng ◽  
Jinghua Xiao ◽  
Yixian Yang ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Xian Liu ◽  
Jiajia Du ◽  
Qing Gao

The problem of absolute stability of Lur’e systems with sector and slope restricted nonlinearities is revisited. Novel time-domain and frequency-domain criteria are established by using the Lyapunov method and the well-known Kalman-Yakubovich-Popov (KYP) lemma. The criteria strengthen some existing results. Simulations are given to illustrate the efficiency of the results.


Author(s):  
Ibiba Emmanuel- Douglas

The challenges of providing safe and high performance marine vehicles present strict and often conflicting constraints that require rational and holistic analysis methodologies to obtain efficient design solutions. This paper presents a mathematical framework for stability analysis, which is one of the key elements in the design and operation of ships and floating bodies that still require considerable improvement. The method is based on the application of the Lyapunov stability analysis concept, which has been highly successful in some other engineering and scientific disciplines. The paper presents the fundamental concepts on the applicability of the Lyapunov method to ship motions stability analysis. Governing mathematical models are derived from first principles and interpreted in the context of geometrical and physical interrelationships. The analytical models are primarily developed for the generalized case of non-linear forced non-conservative systems and simplified by linearization in the case of coupled motion for detailed analysis and characterization of stability conditions and domain. The concept of “motion boundedness” is introduced to satisfy requirements of the Lyapunov method to ship motions subjected to continuous excitations. The analysis leads to some valuable deductions and insight that would be useful in the formulation of stability criteria for ships and marine vehicles in general. The most significant contribution is the possibility of explicit determination of geometric and hydrostatics/hydrodynamics parameters that govern ship stability characteristics.


2013 ◽  
Vol 278-280 ◽  
pp. 2033-2038 ◽  
Author(s):  
Shao Ting Ge ◽  
Gong You Tang ◽  
Xue Yang ◽  
Qi Lei Xu ◽  
Hao Yu ◽  
...  

This paper considers stability analysis of a discrete-time computer virus model in networks. The disease-free equilibrium and the disease equilibrium are first derived from the mathematical model. Then the sufficient condition of stability for the disease-free equilibrium is obtained by the first Lyapunov method. And the sufficient conditions of stability for the disease equilibrium are given by disc theorem. Simulation results demonstrate the effectiveness of the stability conditions.


Author(s):  
Jevgeòijs Carkovs ◽  
Andrejs Matvejevs

Abstract This paper deals with stability analysis of pin-jointed beams that are affected to random pulsating load. The stability conditions of a pin-jointed beam are analysed using a mathematical model of the beam characterised by longitudinal force with Poisson characteristics and applying the stochastic modification of the second Lyapunov method.


Sign in / Sign up

Export Citation Format

Share Document