Ensemble-based multi-objective clustering algorithms for gene expression data sets

Author(s):  
Jianxia Li ◽  
Ruochen Liu ◽  
Mingyang Zhang ◽  
Yangyang Li
2021 ◽  
Author(s):  
Dan Li ◽  
Hong Gu ◽  
Qiaozhen Chang ◽  
Jia Wang ◽  
Pan Qin

Abstract Clustering algorithms have been successfully applied to identify co-expressed gene groups from gene expression data. Missing values often occur in gene expression data, which presents a challenge for gene clustering. When partitioning incomplete gene expression data into co-expressed gene groups, missing value imputation and clustering are generally performed as two separate processes. These two-stage methods are likely to result in unsuitable imputation values for clustering task and unsatisfying clustering performance. This paper proposes a multi-objective joint optimization framework for clustering incomplete gene expression data that addresses this problem. The proposed framework can impute the missing expression values under the guidance of clustering, and therefore realize the synergistic improvement of imputation and clustering. In addition, gene expression similarity and gene semantic similarity extracted from the Gene Ontology are combined, as the form of functional neighbor interval for each missing expression value, to provide reasonable constraints for the joint optimization framework. Experiments on several benchmark data sets confirm the effectiveness of the proposed framework.


Author(s):  
Soumya Raychaudhuri

The most interesting and challenging gene expression data sets to analyze are large multidimensional data sets that contain expression values for many genes across multiple conditions. In these data sets the use of scientific text can be particularly useful, since there are a myriad of genes examined under vastly different conditions, each of which may induce or repress expression of the same gene for different reasons. There is an enormous complexity to the data that we are examining—each gene is associated with dozens if not hundreds of expression values as well as multiple documents built up from vocabularies consisting of thousands of words. In Section 2.4 we reviewed common gene expression strategies, most of which revolve around defining groups of genes based on common profiles. A limitation of many gene expression analytic approaches is that they do not incorporate comprehensive background knowledge about the genes into the analysis. We present computational methods that leverage the peer-reviewed literature in the automatic analysis of gene expression data sets. Including the literature in gene expression data analysis offers an opportunity to incorporate background functional information about the genes when defining expression clusters. In Chapter 5 we saw how literature- based approaches could help in the analysis of single condition experiments. Here we will apply the strategies introduced in Chapter 6 to assess the coherence of groups of genes to enhance gene expression analysis approaches. The methods proposed here could, in fact, be applied to any multivariate genomics data type. The key concepts discussed in this chapter are listed in the frame box. We begin with a discussion of gene groups and their role in expression analysis; we briefly discuss strategies to assign keywords to groups and strategies to assess their functional coherence. We apply functional coherence measures to gene expression analysis; for examples we focus on a yeast expression data set. We first demonstrate how functional coherence can be used to focus in on the key biologically relevant gene groups derived by clustering methods such as self-organizing maps and k-means clustering.


2015 ◽  
Vol 13 (06) ◽  
pp. 1550019 ◽  
Author(s):  
Alexei A. Sharov ◽  
David Schlessinger ◽  
Minoru S. H. Ko

We have developed ExAtlas, an on-line software tool for meta-analysis and visualization of gene expression data. In contrast to existing software tools, ExAtlas compares multi-component data sets and generates results for all combinations (e.g. all gene expression profiles versus all Gene Ontology annotations). ExAtlas handles both users’ own data and data extracted semi-automatically from the public repository (GEO/NCBI database). ExAtlas provides a variety of tools for meta-analyses: (1) standard meta-analysis (fixed effects, random effects, z-score, and Fisher’s methods); (2) analyses of global correlations between gene expression data sets; (3) gene set enrichment; (4) gene set overlap; (5) gene association by expression profile; (6) gene specificity; and (7) statistical analysis (ANOVA, pairwise comparison, and PCA). ExAtlas produces graphical outputs, including heatmaps, scatter-plots, bar-charts, and three-dimensional images. Some of the most widely used public data sets (e.g. GNF/BioGPS, Gene Ontology, KEGG, GAD phenotypes, BrainScan, ENCODE ChIP-seq, and protein–protein interaction) are pre-loaded and can be used for functional annotations.


2013 ◽  
Vol 11 (03) ◽  
pp. 1341006
Author(s):  
QIANG LOU ◽  
ZORAN OBRADOVIC

In order to more accurately predict an individual's health status, in clinical applications it is often important to perform analysis of high-dimensional gene expression data that varies with time. A major challenge in predicting from such temporal microarray data is that the number of biomarkers used as features is typically much larger than the number of labeled subjects. One way to address this challenge is to perform feature selection as a preprocessing step and then apply a classification method on selected features. However, traditional feature selection methods cannot handle multivariate temporal data without applying techniques that flatten temporal data into a single matrix in advance. In this study, a feature selection filter that can directly select informative features from temporal gene expression data is proposed. In our approach, we measure the distance between multivariate temporal data from two subjects. Based on this distance, we define the objective function of temporal margin based feature selection to maximize each subject's temporal margin in its own relevant subspace. The experimental results on synthetic and two real flu data sets provide evidence that our method outperforms the alternatives, which flatten the temporal data in advance.


2005 ◽  
Vol 14 (04) ◽  
pp. 577-597 ◽  
Author(s):  
CHUN TANG ◽  
AIDONG ZHANG

Microarray technologies are capable of simultaneously measuring the signals for thousands of messenger RNAs and large numbers of proteins from single samples. Arrays are now widely used in basic biomedical research for mRNA expression profiling and are increasingly being used to explore patterns of gene expression in clinical research. Most research has focused on the interpretation of the meaning of the microarray data which are transformed into gene expression matrices where usually the rows represent genes, the columns represent various samples. Clustering samples can be done by analyzing and eliminating of irrelevant genes. However, majority methods are supervised (or assisted by domain knowledge), less attention has been paid on unsupervised approaches which are important when little domain knowledge is available. In this paper, we present a new framework for unsupervised analysis of gene expression data, which applies an interrelated two-way clustering approach on the gene expression matrices. The goal of clustering is to identify important genes and perform cluster discovery on samples. The advantage of this approach is that we can dynamically manipulate the relationship between the gene clusters and sample groups while conducting an iterative clustering through both of them. The performance of the proposed method with various gene expression data sets is also illustrated.


Sign in / Sign up

Export Citation Format

Share Document