Evolving Collective Cognition of Robotic Swarms in the Foraging Task with Poison

Author(s):  
Motoaki Hiraga ◽  
Yufei Wei ◽  
Kazuhiro Ohkura
2012 ◽  
Vol 15 (08) ◽  
pp. 1150025 ◽  
Author(s):  
N. LEMMENS ◽  
K. TUYLS

In this paper we present three Swarm Intelligence algorithms which we evaluate on the complex foraging task domain. Each of the algorithms draws inspiration from biologic bee foraging/nest-site selection behavior. The main focus will be on the third algorithm, namely STIGMERGIC LANDMARK FORAGING which is a novel hybrid approach. It combines the high performance of bee-inspired navigation with ant-inspired recruitment. More precisely, navigation is based on Path Integration which results in vectors indicating the distance and direction to a destination. Recruitment only occurs at key locations (i.e., landmarks) inside of the environment. Each landmark contains a collection of vectors with which visiting agents can find their way to a certain goal or to another landmark in an unknown environment. Each vector represents a local segment of a global route. In contrast to ant-inspired recruitment, no attracting or repelling pheromone is used to indicate where to go and how worthwhile a route is in comparison to other routes. Instead, each vector in a landmark has a certain strength indicating how worthwhile it is. In analogy to ant-inspired recruitment, vector strength can be reinforced by visiting agents. Moreover, vector strength decays over time. In the end, this results in optimal routes to destinations. STIGMERGIC LANDMARK FORAGING proves to be very efficient in terms of building and adapting solutions.


2000 ◽  
Vol 59 (3) ◽  
pp. 569-576 ◽  
Author(s):  
Suzanne Held ◽  
Michael Mendl ◽  
Claire Devereux ◽  
Richard W. Byrne
Keyword(s):  

2001 ◽  
Vol 86 (2) ◽  
pp. 692-702 ◽  
Author(s):  
Michaël B. Zugaro ◽  
Eiichi Tabuchi ◽  
Céline Fouquier ◽  
Alain Berthoz ◽  
Sidney I. Wiener

Head direction (HD) cells discharge selectively in macaques, rats, and mice when they orient their head in a specific (“preferred”) direction. Preferred directions are influenced by visual cues as well as idiothetic self-motion cues derived from vestibular, proprioceptive, motor efferent copy, and command signals. To distinguish the relative importance of active locomotor signals, we compared HD cell response properties in 49 anterodorsal thalamic HD cells of six male Long-Evans rats during active displacements in a foraging task as well as during passive rotations. Since thalamic HD cells typically stop firing if the animals are tightly restrained, the rats were trained to remain immobile while drinking water distributed at intervals from a small reservoir at the center of a rotatable platform. The platform was rotated in a clockwise/counterclockwise oscillation to record directional responses in the stationary animals while the surrounding environmental cues remained stable. The peak rate of directional firing decreased by 27% on average during passive rotations ( r 2 = 0.73, P< 0.001). Individual cells recorded in sequential sessions ( n = 8) reliably showed comparable reductions in peak firing, but simultaneously recorded cells did not necessarily produce identical responses. All of the HD cells maintained the same preferred directions during passive rotations. These results are consistent with the hypothesis that the level of locomotor activity provides a state-dependent modulation of the response magnitude of AD HD cells. This could result from diffusely projecting neuromodulatory systems associated with motor state.


Sign in / Sign up

Export Citation Format

Share Document