Social tactics of pigs in a competitive foraging task: the ‘informed forager’ paradigm

2000 ◽  
Vol 59 (3) ◽  
pp. 569-576 ◽  
Author(s):  
Suzanne Held ◽  
Michael Mendl ◽  
Claire Devereux ◽  
Richard W. Byrne
Keyword(s):  
2012 ◽  
Vol 15 (08) ◽  
pp. 1150025 ◽  
Author(s):  
N. LEMMENS ◽  
K. TUYLS

In this paper we present three Swarm Intelligence algorithms which we evaluate on the complex foraging task domain. Each of the algorithms draws inspiration from biologic bee foraging/nest-site selection behavior. The main focus will be on the third algorithm, namely STIGMERGIC LANDMARK FORAGING which is a novel hybrid approach. It combines the high performance of bee-inspired navigation with ant-inspired recruitment. More precisely, navigation is based on Path Integration which results in vectors indicating the distance and direction to a destination. Recruitment only occurs at key locations (i.e., landmarks) inside of the environment. Each landmark contains a collection of vectors with which visiting agents can find their way to a certain goal or to another landmark in an unknown environment. Each vector represents a local segment of a global route. In contrast to ant-inspired recruitment, no attracting or repelling pheromone is used to indicate where to go and how worthwhile a route is in comparison to other routes. Instead, each vector in a landmark has a certain strength indicating how worthwhile it is. In analogy to ant-inspired recruitment, vector strength can be reinforced by visiting agents. Moreover, vector strength decays over time. In the end, this results in optimal routes to destinations. STIGMERGIC LANDMARK FORAGING proves to be very efficient in terms of building and adapting solutions.


2001 ◽  
Vol 86 (2) ◽  
pp. 692-702 ◽  
Author(s):  
Michaël B. Zugaro ◽  
Eiichi Tabuchi ◽  
Céline Fouquier ◽  
Alain Berthoz ◽  
Sidney I. Wiener

Head direction (HD) cells discharge selectively in macaques, rats, and mice when they orient their head in a specific (“preferred”) direction. Preferred directions are influenced by visual cues as well as idiothetic self-motion cues derived from vestibular, proprioceptive, motor efferent copy, and command signals. To distinguish the relative importance of active locomotor signals, we compared HD cell response properties in 49 anterodorsal thalamic HD cells of six male Long-Evans rats during active displacements in a foraging task as well as during passive rotations. Since thalamic HD cells typically stop firing if the animals are tightly restrained, the rats were trained to remain immobile while drinking water distributed at intervals from a small reservoir at the center of a rotatable platform. The platform was rotated in a clockwise/counterclockwise oscillation to record directional responses in the stationary animals while the surrounding environmental cues remained stable. The peak rate of directional firing decreased by 27% on average during passive rotations ( r 2 = 0.73, P< 0.001). Individual cells recorded in sequential sessions ( n = 8) reliably showed comparable reductions in peak firing, but simultaneously recorded cells did not necessarily produce identical responses. All of the HD cells maintained the same preferred directions during passive rotations. These results are consistent with the hypothesis that the level of locomotor activity provides a state-dependent modulation of the response magnitude of AD HD cells. This could result from diffusely projecting neuromodulatory systems associated with motor state.


2021 ◽  
Vol 8 (3) ◽  
pp. 325-350
Author(s):  
Stefanie Keupp ◽  
Farhan Abedin ◽  
Lena Jeanson ◽  
Carolin Kade ◽  
Josefine Kalbitz ◽  
...  

Social comparisons are a fundamental feature of human thinking and affect self-evaluations and task performance. Little is known about the evolutionary origins of social comparison processes, however. Previous studies that investigated performance-based social comparisons in nonhuman primates yielded mixed results. We report three experiments that aimed (a) to explore how the task type may contribute to performance in monkeys, and (b) how a competitive set-up affects monkeys compared to humans. In a co-action touchscreen task, monkeys were neither influenced by nor interested in the performance of the partner. This may indicate that the experimental set-up was not sufficiently relevant to trigger social comparisons. In a novel co-action foraging task, monkeys increased their feeding speed in competitive and co-active conditions, but not in relation to the degree of competition. In an analogue of the foraging task, human participants were affected by partner performance and experimental context, indicating that the task is suitable to elicit social comparisons in humans. Our studies indicate that specifics of task and experimental setting are relevant to draw the monkeys’ attention to a co-actor and that, in line with previous research, a competitive element was crucial. We highlight the need to explore what constitutes “relevant” social comparison situations for monkeys as well as nonhuman animals in general, and point out factors that we think are crucial in this respect (e.g., task type, physical closeness, and the species’ ecology). We discuss that early forms of social comparisons evolved in purely competitive environments with increasing social tolerance and cooperative motivations allowing for more fine-grained processing of social information. Competition driven effects on task performance might constitute the foundation for the more elaborate social comparison processes found in humans, which may involve context-dependent information processing and metacognitive monitoring.


2020 ◽  
pp. 1-24
Author(s):  
James M. Borg ◽  
Alastair Channon

In a recent article by Borg and Channon it was shown that social information alone, decoupled from any within-lifetime learning, can result in improved performance on a food-foraging task compared to when social information is unavailable. Here we assess whether access to social information leads to significant behavioral differences both when access to social information leads to improved performance on the task, and when it does not: Do any behaviors resulting from social-information use, such as movement and increased agent interaction, persist even when the ability to discriminate between poisonous and non-poisonous food is no better than when social-information is unavailable? Using a neuroevolutionary artificial life simulation, we show that social-information use can lead to the emergence of behaviors that differ from when social information is unavailable, and that these behaviors act as a promoter of agent interaction. The results presented here suggest that the introduction of social information is sufficient, even when decoupled from within-lifetime learning, for the emergence of pro-social behaviors. We believe this work to be the first use of an artificial evolutionary system to explore the behavioral consequences of social-information use in the absence of within-lifetime learning.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Brian Silston ◽  
Toby Wise ◽  
Song Qi ◽  
Xin Sui ◽  
Peter Dayan ◽  
...  

AbstractNatural observations suggest that in safe environments, organisms avoid competition to maximize gain, while in hazardous environments the most effective survival strategy is to congregate with competition to reduce the likelihood of predatory attack. We probed the extent to which survival decisions in humans follow these patterns, and examined the factors that determined individual-level decision-making. In a virtual foraging task containing changing levels of competition in safe and hazardous patches with virtual predators, we demonstrate that human participants inversely select competition avoidant and risk diluting strategies depending on perceived patch value (PPV), a computation dependent on reward, threat, and competition. We formulate a mathematically grounded quantification of PPV in social foraging environments and show using multivariate fMRI analyses that PPV is encoded by mid-cingulate cortex (MCC) and ventromedial prefrontal cortices (vMPFC), regions that integrate action and value signals. Together, these results suggest humans utilize and integrate multidimensional information to adaptively select patches highest in PPV, and that MCC and vMPFC play a role in adapting to both competitive and predatory threats in a virtual foraging setting.


Sign in / Sign up

Export Citation Format

Share Document