Experimental study on dielectric and mechanical properties of PVC cable insulation with SiO2/ CaCO3 nanofillers

Author(s):  
C.Pugazhendhi Sugumaran
2015 ◽  
Vol 749 ◽  
pp. 159-163 ◽  
Author(s):  
D. Edison Selvaraj ◽  
R. Vijayaraj ◽  
U. Satheeshwaran ◽  
J. Nancy ◽  
C. Pugazhendhi Sugumaran ◽  
...  

Cables are an integral part of the power transmission and distribution network. As the voltage level increases, amount of insulation used in the cable increases. Therefore a need arises for a material with better insulation characteristics to be used in cables. The dielectric strength of cable insulation depends on many factors such as the existence of filler material in the insulation. In this work, laboratory studies on a new filler material for cable insulation have been conducted. The influence of Silicon dioxide (SiO2) filler on the dielectric and mechanical properties of polyvinyl chloride (PVC) cable were analyzed. Comparison is made between the result of measurement and the actual value of the pure specimen. From the results, it is shown that the filler material has improved the dielectric and mechanical properties of the cable insulation.


2021 ◽  
Vol 5 (4) ◽  
pp. 110
Author(s):  
Flaminio Sales ◽  
Andrews Souza ◽  
Ronaldo Ariati ◽  
Verônica Noronha ◽  
Elder Giovanetti ◽  
...  

Polydimethylsiloxane (PDMS) is a polymer that has attracted the attention of researchers due to its unique properties such as transparency, biocompatibility, high flexibility, and physical and chemical stability. In addition, PDMS modification and combination with other materials can expand its range of applications. For instance, the ability to perform superhydrophobic coating allows for the manufacture of lenses. However, many of these processes are complex and expensive. One of the most promising modifications, which consists of the development of an interchangeable coating, capable of changing its optical characteristics according to some stimuli, has been underexplored. Thus, we report an experimental study of the mechanical and optical properties and wettability of pure PDMS and of two PDMS composites with the addition of 1% paraffin or beeswax using a gravity casting process. The composites’ tensile strength and hardness were lower when compared with pure PDMS. However, the contact angle was increased, reaching the highest values when using the paraffin additive. Additionally, these composites have shown interesting results for the spectrophotometry tests, i.e., the material changed its optical characteristics when heated, going from opaque at room temperature to transparent, with transmittance around 75%, at 70 °C. As a result, these materials have great potential for use in smart devices, such as sensors, due to its ability to change its transparency at high temperatures.


2021 ◽  
Vol 287 ◽  
pp. 123019
Author(s):  
Jianmin Hua ◽  
Fei Wang ◽  
Lepeng Huang ◽  
Neng Wang ◽  
Xuanyi Xue

Sign in / Sign up

Export Citation Format

Share Document