rock bolts
Recently Published Documents


TOTAL DOCUMENTS

330
(FIVE YEARS 85)

H-INDEX

23
(FIVE YEARS 4)

Author(s):  
Prasoon Singh ◽  
Hyongdoo Jang ◽  
A. J. S. Sam Spearing

AbstractNumerical modelling has become an important tool in the underground rock bolt reinforcement designing process. Numerical modelling provides the advantage of easily and quickly simulating complex underground geometries and mechanisms with sensitivity analyses. However, a numerical model needs to be calibrated using mathematical solutions, lab testing or with actual in-situ observations and measurements (which is the preferred method) before its results can be quantitatively applied to reinforcement design. Instrumented rock bolts provide a useful data source for calibrating in-situ rock bolt models. In this work, procedures have been presented to identify and determine the orientation of structures in the rock mass based on the strains on the instrumented rock bolts. A method to calibrate the rock bolt model with in-situ data is also presented. The results of the presented procedures have been validated with laboratory tests and numerical modelling. The procedures have been applied to create and calibrate an in-situ rock bolt model in FLAC3D and the results are validated using in-situ data.


2021 ◽  
pp. 108128652110533
Author(s):  
Yijie Liu ◽  
Aizhong Lu ◽  
Xiangtai Zeng

Analysis of the mechanical behavior of rock mass reinforced by fully grouted rock bolts is introduced based on the interaction between the rock mass and the bolts. The model is based on the following premises: (1) the elastic behavior of the rock mass and rock bolts; (2) the plane strain condition; (3) a deeply buried circular tunnel; (4) complete contact between the bolts and the surrounding rock, that is, they are bonded together; (5) the loads on the surrounding rock from the fully grouted rock bolts are replaced by innumerable concentrated forces along the longitudinal direction of the bolts. For this, the analytical radial displacement solution for a deeply buried circular tunnel subjected to concentrated forces at arbitrary points in surrounding rock is derived. As long as this displacement solution is integrated along the length direction of the bolt, the effect of the bolt on the surrounding rock can be obtained. According to the complete contact condition at the anchoring interface and the force balance condition of the bolts, under the action of the in situ stress, linear equations made up of shear stresses on the bolts are established, from which the distribution of shear stresses and axial forces along the bolts can be solved. Model simulations confirm the previous findings that each installed bolt has a pick-up length, an anchor length and a neutral point. Besides, the influence of the parameters of the rock bolts and the surrounding rock are discussed. The conclusion is consistent with the results of a practical project without adopting any empirical equations. The results of this method can provide a theoretical basis for the design and layout of rock bolts in underground caverns.


2021 ◽  
Vol 1 (2) ◽  
Author(s):  
Tuan Minh TRAN ◽  
Ngoc Thai DO ◽  
Trung Thanh DANG ◽  
Duyen Phong NGUYEN ◽  
Trong Hung VO

Large rock mass deformation around deep roadways in the weak rocks was a significantproblem in mining activities in Vietnam and other countries. The excavation of roadways leads to highreleasing stress, which exceeds the peak strength of spalling surrounding rock and causes it to enter thepost-failure stage. Tensile failures then initiate and develop around the roadways, which causes thefragmentation, dilation, and separation of surrounding rock. The capacity of the primary support systemis low, which results in a severe contraction in the whole section of roadways, which requires findingsolutions to prevent the deformation of rock mass around roadways and technical solutions fromstabilizing for deep roadways. To stability analysis of roadways can be applied analytical, experimental,semi-experimental, and numerical methods. This paper introduces the prevention mechanism of largedeformation of rock mass around roadways using 2-level rock bolts. The research results show that usingthe system of two-level rock bolts can reduce the values of tensile stress on the boundary of roadwaysrange from 10 to 15% compared with only one. The importance of the total displacement of rock mass onthe boundary of roadways will be reduced from 3.47 to 13.85% using six long cable bolts.


Author(s):  
Qiru Sui ◽  
Manchao He ◽  
Pengfei He ◽  
Min Xia ◽  
Zhigang Tao

2021 ◽  
Vol 15 (4) ◽  
pp. 8-14
Author(s):  
Oleksandr Krykovskyi ◽  
Viktoriia Krykovska ◽  
Serhii Skipochka

Purpose is to analyze changes in shape and dimensions of a rock mass area, fortified with the help of a polymer, depending upon the density of injection rock bolts as well as the value of initial permeability of enclosing rocks to substantiate optimum process solutions to support roofs within the unstable rocks and protect mine workings against water inflow and gas emission. Methods. Numerical modeling method for coupled processes of rock mass strain and filtration of liquid components of a polymer has been applied. The model is based upon fundamental ideas of mechanics of solids and filtration theory. The problem has been solved using a finite element method. Its solution took into consideration both the initial permeability and the permeability stipulated by mine working driving, injection time of reagents and their polymerization, and effect of po-lymer foaming in the process of mixing of its components. Changes in physicomechanical and filtration characteristics of rock mass during polymer hardening were simulated. It has been taken into consideration that a metal delivery pipe starts operating as a reinforcing support element only after the polymer hardening. Findings. If three and five injection rock bolts are installed within a mine working section then stresses, permeability coefficients, pressure of liquid polymeric composition, and geometry of the fortified area of rock mass have been calculated. It has been shown that rock bolt location is quite important to form a rock-bolt arch. It has been demonstrated for the assumed conditions that if five injection rock bolts are installed within the mine working roof then close interaction between rock-bolt supports takes place; moreover, the integral arch is formed within the mine working roof. Originality. Dependence of change in the polymer reinforced area upon a value of initial permeability of enclosing rocks has been derived. It has been shown that in terms of low values of initial permeability, geometry of rock-bolt supports as well as its size is identified only by means of a value of the unloaded zone around the mine working. In this context, initial permeabi-lity increase results in the enlarged diameter of the reinforced rock mass area in the neighbourhood of the injection rock bolt. Practical implications. The findings are recommended to be applied while improving a method to support the mine working roof and decrease water inflow as well as gas emission from the rocks, being undermined, into the working.


2021 ◽  
Author(s):  
Andrzej Staniek

The chapter presents a method for non-destructive identification of discontinuity of a resin layer (grout) surrounding rock bolts. The method uses modal analysis procedures and is based on an impact excitation where a response transducer is positioned at a visible part of a rock bolt. Since the installed rock bolt acts as an oscillator, its modal parameters are changed by different lengths and positions of grouting discontinuity. Thanks to proper extraction of these parameters, with a resonant frequency seen as the most valuable, the intended identification is possible. The measurements and analyses were performed in laboratory conditions and subsequently at experimental and working coal mines where the measurement system was verified. The developed finite element model of the system under test, rock bolt - resin - rock mass, may be used as reference data base for investigated rock bolts. The advantages of the method include plausibility of grouting discontinuity assessment at any time after its installation, a non-destructive character of the method and the fact that it is not necessary to install any additional equipment into a roof section. It enables a localization of a grout discontinuity, whether it is the back part or the front part of a rock bolt.


Author(s):  
Hao Shi ◽  
Lei Song ◽  
Houquan Zhang ◽  
Wenlong Chen ◽  
Huasheng Lin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document