Mobile robot trajectory tracking using PID fast terminal sliding mode inverse dynamic Control

Author(s):  
Ali Mallem ◽  
Slimane Nourredine ◽  
Walid Benaziza
Robotica ◽  
2016 ◽  
Vol 35 (7) ◽  
pp. 1488-1503 ◽  
Author(s):  
Vikas Panwar

SUMMARYThis paper focuses on fast terminal sliding mode control (FTSMC) of robot manipulators using wavelet neural networks (WNN) with guaranteed H∞tracking performance. The FTSMC for trajectory tracking is employed to drive the tracking error of the system to converge to an equilibrium point in finite time. The tracking error arrives at the sliding surface in finite time and then converges to zero in finite time along the sliding surface. To deal with the case of uncertain and unknown robot dynamics, a WNN is proposed to fully compensate the robot dynamics. The online tuning algorithms for the WNN parameters are derived using Lyapunov approach. To attenuate the effect of approximation errors to a prescribed level, H∞tracking performance is proposed. It is shown that the proposed WNN is able to learn the system dynamics with guaranteed H∞tracking performance and finite time convergence for trajectory tracking. Finally, the simulation results are performed on a 3D-Microbot manipulator to show the effectiveness of the controller.


Robotica ◽  
2021 ◽  
pp. 1-17
Author(s):  
Qiuyue Qin ◽  
Guoqin Gao

SUMMARY In this research, a dynamic model is first established based on screw theory and the principle of virtual work for a bilaterally symmetrical hybrid robot. By combining a novel composite error (NCE) with second-order nonsingular fast terminal sliding mode (SONFTSM) control method, a NCE-based SONFTSM dynamic control method is further presented to guarantee better trajectory tracking performance and synchronization performance simultaneously. The asymptotic convergence of proposed errors and the stability of the proposed control method have been proved theoretically. Finally, the simulation and experiment are implemented to validate the effectiveness of the proposed control method.


2011 ◽  
Vol 346 ◽  
pp. 650-656
Author(s):  
Guang Yan Xu ◽  
Xiao Yan Jia ◽  
Hong Shi ◽  
Jian Guo Cui

In this paper, we discussed the trajectory tracking control problem of the kinematic model of wheel mobile robot. Designed an asymptotic stability tracking controller, using visual servo method based on inverse system and sliding mode variable structure control, and proposed a method to measure motion state of a target mobile robot. Simulation results show this method is feasible.


Sign in / Sign up

Export Citation Format

Share Document