Hybrid energy storage system for life cycle improvement

Author(s):  
Hanis Farhah Jamahori ◽  
Hasimah Abdul Rahman
2021 ◽  
Vol 13 (14) ◽  
pp. 7682
Author(s):  
Min-Fu Hsieh ◽  
Po-Hsun Chen ◽  
Fu-Sheng Pai ◽  
Rui-Yang Weng

This paper presents a C-rate control method for a battery/supercapacitor (SC) hybrid energy storage system (HESS) to enhance the life cycle of the battery in electric vehicles (EVs). The proposed HESS provides satisfactory power for dynamic movements of EVs (e.g., acceleration or braking) while keeping the battery current within a secure level to prevent it from degradation. The configurations of conventional HESSs are often complex due to the two energy storages and their current/voltage sensing involved. Therefore, in this paper, a simple current-sensing scheme is utilized and the battery is directly treated as a controlled variable to help the battery output current remain stable for different load conditions. While the proposed circuit requires only one current feedback signal, neither the SC nor load current sensors are needed, and the circuit design is thus significantly simplified. Both simulation and experimental results validated the effectiveness of the proposed HESS operating in conjunction with the motor drive system. The proposed method aims at fully utilizing recycled energy and prolonging battery lifespan.


2020 ◽  
Vol 185 ◽  
pp. 01023
Author(s):  
Yuan An ◽  
Jianing Li ◽  
Cenyue Chen

The intermittence and uncertainty of wind power and photovoltaic power have hindered the large-scale development of both. Therefore, it is very necessary to properly configure energy storage devices in the wind-solar complementary power grid. For the hybrid energy storage system composed of storage battery and supercapacitor, the optimization model of hybrid energy storage capacity is established with the minimum comprehensive cost as the objective function and the energy saving and charging state as the constraints. A simulated annealing artificial fish school algorithm with memory function is proposed to solve the model. The results show that the hybrid energy storage system can greatly save costs and improve system economy.


Sign in / Sign up

Export Citation Format

Share Document