scholarly journals Research on capacity optimization of micro-grid hybrid energy storage system based on simulated annealing artificial fish swarm algorith with memory function

2020 ◽  
Vol 185 ◽  
pp. 01023
Author(s):  
Yuan An ◽  
Jianing Li ◽  
Cenyue Chen

The intermittence and uncertainty of wind power and photovoltaic power have hindered the large-scale development of both. Therefore, it is very necessary to properly configure energy storage devices in the wind-solar complementary power grid. For the hybrid energy storage system composed of storage battery and supercapacitor, the optimization model of hybrid energy storage capacity is established with the minimum comprehensive cost as the objective function and the energy saving and charging state as the constraints. A simulated annealing artificial fish school algorithm with memory function is proposed to solve the model. The results show that the hybrid energy storage system can greatly save costs and improve system economy.

Electronics ◽  
2021 ◽  
Vol 10 (15) ◽  
pp. 1801
Author(s):  
Chenyun Pan ◽  
Shengyu Tao ◽  
Hongtao Fan ◽  
Mengyao Shu ◽  
Yong Zhang ◽  
...  

Optimal operation of energy storage systems plays an important role in enhancing their lifetime and efficiency. This paper combines the concepts of the cyber–physical system (CPS) and multi-objective optimization into the control structure of the hybrid energy storage system (HESS). Owing to the time-varying characteristics of HESS, combining real-time data with physical models via CPS can significantly promote the performance of HESS. The multi-objective optimization model designed in this paper can improve the utilization of supercapacitors, reduce energy consumption, and prevent the state of charge (SOC) of HESS from exceeding the limitation. The new control scheme takes the characteristics of the components of HESS into account and is beneficial in reducing battery short-term power cycling and high discharge currents. The rain-flow counting algorithm is applied for battery life prediction to quantify the benefits of the HESS under the control scheme proposed. A much better power-sharing relationship between the supercapacitor and the lithium–ion battery (LiB) can be observed from the SIMULINK results and the case study with our new control scheme. Moreover, compared to the traditional low-pass filter control method, the battery lifetime is quantifiably increased from 3.51 years to 10.20 years while the energy efficiency is improved by 1.56%.


Sign in / Sign up

Export Citation Format

Share Document