Weighted guided image filtering for image enhancement

Author(s):  
Rajasekhar Karumuri ◽  
Sangu Aruna Kumari
2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Yingkun Hou ◽  
Xiaobo Qu ◽  
Guanghai Liu ◽  
Seong-Whan Lee ◽  
Dinggang Shen

In this paper, we develop a novel linear singularity representation method using spatial K-neighbor block-extraction and Haar transform (BEH). Block-extraction provides a group of image blocks with similar (generally smooth) backgrounds but different image edge locations. An interblock Haar transform is then used to represent these differences, thus achieving a linear singularity representation. Next, we magnify the weak detailed coefficients of BEH to allow for image enhancement. Experimental results show that the proposed method achieves better image enhancement, compared to block-matching and 3D filtering (BM3D), nonsubsampled contourlet transform (NSCT), and guided image filtering.


Author(s):  
Qi Mu ◽  
Xinyue Wang ◽  
Yanyan Wei ◽  
Zhanli Li

AbstractIn the state of the art, grayscale image enhancement algorithms are typically adopted for enhancement of RGB color images captured with low or non-uniform illumination. As these methods are applied to each RGB channel independently, imbalanced inter-channel enhancements (color distortion) can often be observed in the resulting images. On the other hand, images with non-uniform illumination enhanced by the retinex algorithm are prone to artifacts such as local blurring, halos, and over-enhancement. To address these problems, an improved RGB color image enhancement method is proposed for images captured under non-uniform illumination or in poor visibility, based on weighted guided image filtering (WGIF). Unlike the conventional retinex algorithm and its variants, WGIF uses a surround function instead of a Gaussian filter to estimate the illumination component; it avoids local blurring and halo artifacts due to its anisotropy and adaptive local regularization. To limit color distortion, RGB images are first converted to HSI (hue, saturation, intensity) color space, where only the intensity channel is enhanced, before being converted back to RGB space by a linear color restoration algorithm. Experimental results show that the proposed method is effective for both RGB color and grayscale images captured under low exposure and non-uniform illumination, with better visual quality and objective evaluation scores than from comparator algorithms. It is also efficient due to use of a linear color restoration algorithm.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 196690-196699
Author(s):  
Yaqiao Cheng ◽  
Zhenhong Jia ◽  
Huicheng Lai ◽  
Jie Yang ◽  
Nikola K. Kasabov

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Tianyi Wang ◽  
Chengxiang Wang ◽  
Kequan Zhao ◽  
Wei Yu ◽  
Min Huang

Abstract Limited-angle computed tomography (CT) reconstruction problem arises in some practical applications due to restrictions in the scanning environment or CT imaging device. Some artifacts will be presented in image reconstructed by conventional analytical algorithms. Although some regularization strategies have been proposed to suppress the artifacts, such as total variation (TV) minimization, there is still distortion in some edge portions of image. Guided image filtering (GIF) has the advantage of smoothing the image as well as preserving the edge. To further improve the image quality and protect the edge of image, we propose a coupling method, that combines ℓ 0 {\ell_{0}} gradient minimization and GIF. An intermediate result obtained by ℓ 0 {\ell_{0}} gradient minimization is regarded as a guidance image of GIF, then GIF is used to filter the result reconstructed by simultaneous algebraic reconstruction technique (SART) with nonnegative constraint. It should be stressed that the guidance image is dynamically updated as the iteration process, which can transfer the edge to the filtered image. Some simulation and real data experiments are used to evaluate the proposed method. Experimental results show that our method owns some advantages in suppressing the artifacts of limited angle CT and in preserving the edge of image.


Sign in / Sign up

Export Citation Format

Share Document