Energy Efficient Routing Protocol Based on Residual Energy and Energy Consumption Rate for Heterogeneous Wireless Sensor Networks

Author(s):  
Li Xiaoya ◽  
Huang Daoping ◽  
Yang Jian
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Rajesh Kumar Varun ◽  
Rakesh C. Gangwar ◽  
Omprakash Kaiwartya ◽  
Geetika Aggarwal

In wireless sensor networks, energy is a precious resource that should be utilized wisely to improve its life. Uneven distribution of load over sensor devices is also the reason for the depletion of energy that can cause interruptions in network operations as well. For the next generation’s ubiquitous sensor networks, a single artificial intelligence methodology is not able to resolve the issue of energy and load. Therefore, this paper proposes an energy-efficient routing using a fuzzy neural network (ERFN) to minimize the energy consumption while fairly equalizing energy consumption among sensors thus as to prolong the lifetime of the WSN. The algorithm utilizes fuzzy logic and neural network concepts for the intelligent selection of cluster head (CH) that will precisely consume equal energy of the sensors. In this work, fuzzy rules, sets, and membership functions are developed to make decisions regarding next-hop selection based on the total residual energy, link quality, and forward progress towards the sink. The developed algorithm ERFN proofs its efficiency as compared to the state-of-the-art algorithms concerning the number of alive nodes, percentage of dead nodes, average energy decay, and standard deviation of residual energy.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Fang Zhu ◽  
Junfang Wei

Underwater Wireless Sensor Networks (UWSNs) have drawn tremendous attentions from all fields because of their wide application. Underwater wireless sensor networks are similar to terrestrial Wireless Sensor Networks (WSNs), however, due to different working environment and communication medium, UWSNs have many unique characteristics such as high bit error rate, long end-to-end delay and low bandwidth. These characteristics of UWSNs lead to many problems such as retransmission, high energy consumption and low reliability. To solve these problems, many routing protocols for UWSNs are proposed. In this paper, a localization-free routing protocol, named energy efficient routing protocol based on layers and unequal clusters (EERBLC) is proposed. EERBLC protocol consists of three phases: layer and unequal cluster formation, transmission routing, maintenance and update of clusters. In the first phase, the monitoring area under the water is divided into layers, the nodes in the same layer are clustered. For balancing energy of the whole network and avoiding the “hotspot” problem, a novel unequal clustering method based on layers for UWSNs is proposed, in which a new calculation method of unequal cluster size is presented. Meanwhile, a new cluster head selection mechanism based on energy balance and degree is given. In the transmission phase, EERBLC protocol proposes a novel next forwarder selection method based on the forwarding ratio and the residual energy. In the third phase, Intra and inter cluster updating method is presented. The simulation results show that the EERBLC can effectively balance the energy consumption, prolong the network lifetime, and increase the amount of data transmission compared with DBR and EEDBR protocols.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Jia Yanfei ◽  
Chen Guangda ◽  
Zhao Liquan

In heterogeneous wireless sensor networks, sensor nodes are randomly distributed in some regions. In some applications, they may be randomly distributed in different regions. Besides, nodes with the same type have almost the same probability to be selected as cluster head. The cluster head will consume much more energy to receive and transmit data than the other nodes. If nodes with little residual energy have been elected as cluster heads, it will affect the efficiency of the network due to its early death. An improved energy-efficient routing protocol is proposed for heterogeneous wireless sensor networks. Firstly, it supposes that the different types of nodes are distributed in different zones. Secondly, by improving the threshold, nodes with large residual energy have a greater possibility of becoming cluster heads. In the end, it designs a mixed data transmission method. The cluster heads of supper nodes and advance nodes directly transmit data to the base station. The normal nodes adopt single hops and multiple hops mixed methods to transmit data. This can minimize the energy of the communication from cluster head to base station. Simulation results show that this algorithm has achieved a longer lifetime for the wireless sensor network than stable election protocol and threshold-sensitive stable election protocol algorithm.


2017 ◽  
Vol 5 (1) ◽  
pp. 1191-1194
Author(s):  
Mr.SharadA. Bhad. ◽  
◽  
Mr.VikramM. Chavan. ◽  
Mr.NileshS. Nalawade. ◽  
Mr.AmolP. Nagime. ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document