Roll autopilot design for reentry vehicle with moving-mass control system

Author(s):  
Wang Yafei ◽  
Yu Jianqiao ◽  
Wang Linlin ◽  
Shen Yuanchuan
1996 ◽  
Author(s):  
Raymond Byrne ◽  
Beverly Sturgis ◽  
Rush Robinett

2011 ◽  
Vol 63-64 ◽  
pp. 381-384
Author(s):  
Hong Chao Zhao ◽  
Jie Chen ◽  
Hua Zhang Liu

The existing moving mass control system of a nonspinning reentry warhead could not drive the system error to reach zero in finite time. In order to settle the finite time reach issue, an RBF neural network-based terminal sliding mode controller was presented to design the moving mass control system. It used a terminal sliding mode to ensure that the error reaches zero in finite time. The disturbance and coupled terms of the warhead were treated as uncertainties. An RBF neural network was used to estimate the uncertainties. A nonspinning warhead was taken in the simulation to test the performance of the presented controller. The simulation results show the presented controller has faster tracking speed and higher tracking precision than the former research result.


2011 ◽  
Vol 130-134 ◽  
pp. 1963-1967 ◽  
Author(s):  
E Zhao ◽  
Bao Wei Song

In order to solve the problem of general fins and rudders being lower at low moving speed, the moving mass technical is applied onto AUV, thus to radically solve the weakness of control method with fin and rudder. The space dynamics model of moving mass control is created for AUV. And based on this, the moving mass control system is designed with the sliding mode variable structure control method so as to ensure system tracking error zero convergence. By controlling the moving mass movement with moving mass control system, the attitude of AVU is previously controlled. And simulation result proves that moving mass control system will control the AUV attitude angle precisely and rapidly.


Sign in / Sign up

Export Citation Format

Share Document