A novel concept of attitude control for large multirotor-UAVs based on moving mass control

Author(s):  
Tomislav Haus ◽  
Nikola Prkut ◽  
Katarina Borovina ◽  
Bruno Maric ◽  
Matko Orsag ◽  
...  
2020 ◽  
Vol 107 ◽  
pp. 106238
Author(s):  
Shahin Darvishpoor ◽  
Jafar Roshanian ◽  
Morteza Tayefi

2021 ◽  
pp. 1-14
Author(s):  
L. Chen ◽  
Q. Gao ◽  
Y. Deng ◽  
J. Liu

Abstract Stratospheric airships are lighter-than-air vehicles that work at an altitude of 20km in the lower calm portion of the stratosphere. They can be used as real-time surveillance platforms for environment monitoring and civil communication. Solar energy is the ideal power choice for long-endurance stratospheric airships. Attitude control is important for airships so that they can point at a target for observation or adjust the attitude to improve the output performance of solar panels. Stratospheric airships have a large volume and semi-flexible structure. The typical actuators used are aerodynamic surfaces, vectored thrust and ballonets. However, not all these actuators can work well under special working conditions, such as low density and low speed. In this study, moving-mass control is introduced to stratospheric airships because its control efficiency is independent of airspeed and atmospheric density. A nonlinear feedback controller based on generalised inverse with a nonlinear mapping module is designed to implement moving-mass control. Such a new station keeping scheme with moving masses is proposed for airships with different working situations.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Matteo Dentis ◽  
Elisa Capello ◽  
Giorgio Guglieri

The purpose of this paper is the design of guidance and control algorithms for orbital space maneuvers. A 6-dof orbital simulator, based on Clohessy-Wiltshire-Hill equations, is developed in C language, considering cold gas reaction thrusters and reaction wheels as actuation system. The computational limitations of on-board computers are also included. A combination of guidance and control algorithms for an orbital maneuver is proposed: (i) a suitably designed Zero-Effort-Miss/Zero-Effort-Velocity (ZEM/ZEV) algorithm is adopted for the guidance and (ii) a linear quadratic regulator (LQR) is used for the attitude control. The proposed approach is verified for different cases, including external environment disturbances and errors on the actuation system.


Author(s):  
Jianqing Li ◽  
Changsheng Gao ◽  
Tianming Feng ◽  
Wuxing Jing

This paper presents a novel configuration of flight vehicle with moving mass control. We focus on the development of the proposed control mechanism and investigate the feasibility of an equivalent experimental setup. First, the effect of the moving mass parameters on the control authority is investigated. Then, a control law based on immersion and invariance (I&I) theory is presented for the moving mass control system. In the design process, we select a first-order target system to reduce the difficulty of controller design. To deal with the coupling caused by the additional inertia moment, which is generated by the motion of the moving mass, the extended state observer (ESO) is designed. The proposed adaptive controller is simulated and tested on the experimental setup. Finally, the simulation results validate the quality of the proposed adaptive controller, which ensures a good performance in the novel configuration with internal moving mass.


Sign in / Sign up

Export Citation Format

Share Document