A pedestrian navigation system based on MEMS inertial measurement unit

Author(s):  
Xiaochun Tian ◽  
Jiabin Chen ◽  
Yongqiang Han ◽  
Jianyu Shang ◽  
Nan Li
Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 209
Author(s):  
Tianyu Chen ◽  
Gongliu Yang ◽  
Qingzhong Cai ◽  
Zeyang Wen ◽  
Wenlong Zhang

Pedestrian Navigation System (PNS) is one of the research focuses of indoor positioning in GNSS-denied environments based on the MEMS Inertial Measurement Unit (MIMU). However, in the foot-mounted pedestrian navigation system with MIMU or mobile phone as the main carrier, it is difficult to make the sampling time of gyros and accelerometers completely synchronous. The gyro-accelerometer asynchronous time affects the positioning of PNS. To solve this problem, a new error model of gyro-accelerometer asynchronous time is built. The effect of gyro-accelerometer asynchronous time on pedestrian navigation is analyzed. A filtering model is designed to calibrate the gyro-accelerometer asynchronous time, and a zero-velocity detection method based on the rate of attitude change is proposed. The indoor experiment shows that the gyro-accelerometer asynchronous time is estimated effectively, and the positioning accuracy of PNS is improved by the proposed method after compensating for the errors caused by gyro-accelerometer asynchronous time.


Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1791
Author(s):  
Ruihui Zhu ◽  
Yunjia Wang ◽  
Hongji Cao ◽  
Baoguo Yu ◽  
Xingli Gan ◽  
...  

This paper presents an evaluation of real-time kinematic (RTK)/Pseudolite/landmarks assistance heuristic drift elimination (LAHDE)/inertial measurement unit-based personal dead reckoning systems (IMU-PDR) integrated pedestrian navigation system for urban and indoor environments. Real-time kinematic (RTK) technique is widely used for high-precision positioning and can provide periodic correction to inertial measurement unit (IMU)-based personal dead reckoning systems (PDR) outdoors. However, indoors, where global positioning system (GPS) signals are not available, RTK fails to achieve high-precision positioning. Pseudolite can provide satellite-like navigation signals for user receivers to achieve positioning in indoor environments. However, there are some problems in pseudolite positioning field, such as complex multipath effect in indoor environments and integer ambiguity of carrier phase. In order to avoid the limitation of these factors, a local search method based on carrier phase difference with the assistance of IMU-PDR is proposed in this paper, which can achieve higher positioning accuracy. Besides, heuristic drift elimination algorithm with the assistance of manmade landmarks (LAHDE) is introduced to eliminate the accumulated error in headings derived by IMU-PDR in indoor corridors. An algorithm verification system was developed to carry out real experiments in a cooperation scene. Results show that, although the proposed pedestrian navigation system has to use human behavior to switch the positioning algorithm according to different scenarios, it is still effective in controlling the IMU-PDR drift error in multiscenarios including outdoor, indoor corridor, and indoor room for different people.


Sign in / Sign up

Export Citation Format

Share Document