MIMO system capacity with imperfect feedback channel

Author(s):  
Wen Zhou ◽  
Caihong Kai ◽  
Xutao Li
2016 ◽  
Vol 78 (5-7) ◽  
Author(s):  
Mohd Syarhan Idris ◽  
Nur Idora Abdul Razak ◽  
Azlina Idris ◽  
Ruhani Ab Rahman

Multiple Input Multiple Output (MIMO) system has been brought a great improvement in spectral efficiency and the system capacity by serving multiple users simultaneously. The mathematical model of downlink Multi-user MIMO system and its capacity has been presented as well as different precoded transmission schemes. It is to implementing the downlink MU-MIMO system, such as channel inversion (CI), block diagonalization (BD), dirty paper coding (DPC) and tomlinsonharashimaprecoding (THP). It is because, in wireless and mobile communication system has been requires a reliable transmission of high data rates under various channel type different scenarios and reduce MU interference in the system.   These compares the method of transmission for broadcast channel (BC) and propose the best one method that outperforms existing technique with percentage improvement from the worst performance.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Mohamed Abdul Haleem

A massive MIMO wireless system is a multiuser MISO system where base stations consist of a large number of antennas with respect to number of user devices, each equipped with a single antenna. Massive MIMO is seen as the way forward in enhancing the transmission rate and user capacity in 5G wireless. The potential of massive MIMO system lies in the ability to almost always realize multiuser channels with near zero mutual coupling. Coupling factor reduces by 1/2 for each doubling of transmit antennas. In a high bit rate massive MIMO system with m base station antennas and n users, downlink capacity increases as log2⁡m bps/Hz, and the capacity per user reduces as log2⁡n bps/Hz. This capacity can be achieved by power sharing and using signal weighting vectors aligned to respective 1×m channels of the users. For low bit rate transmission, time sharing achieves the capacity as much as power sharing does. System capacity reduces as channel coupling factor increases. Interference avoidance or minimization strategies can be used to achieve the available capacity in such scenarios. Probability distribution of channel coupling factor is a convenient tool to predict the number of antennas needed to qualify a system as massive MIMO.


2013 ◽  
Vol 2013 ◽  
pp. 1-8
Author(s):  
Chaowei Wang ◽  
Weidong Wang ◽  
Cheng Wang ◽  
Shuai Wang ◽  
Yang Yu

Antenna selection has been regarded as an effective method to acquire the diversity benefits of multiple antennas while potentially reduce hardware costs. This paper focuses on receive antenna selection. According to the proportion between the numbers of total receive antennas and selected antennas and the influence of each antenna on system capacity, we propose a fast adaptive antenna selection algorithm for wireless multiple-input multiple-output (MIMO) systems. Mathematical analysis and numerical results show that our algorithm significantly reduces the computational complexity and memory requirement and achieves considerable system capacity gain compared with the optimal selection technique in the same time.


2014 ◽  
Vol 716-717 ◽  
pp. 1194-1198
Author(s):  
Xiao Yu Li ◽  
Xiao Fei Zhang ◽  
Da Zhuan Xu ◽  
Qui Ming Zhu

This paper addresses the problem of the effect of different antenna layouts on the capacity of massive multiple-input multiple-output (MIMO) system capacity. Based on the narrow-band, flat fading channel model, the effect of scattering environment and antenna layout are considered by incorporating the power azimuth spectrum (PAS) and the array manifold vector. Under the same antenna aperture, six antenna layouts are investigated among which the UCA yields the best capacity while ULA yields the lowest capacity. The more symmetric the antenna geometry is, the better capacity performance it has.


Sign in / Sign up

Export Citation Format

Share Document