scholarly journals A Fast Adaptive Receive Antenna Selection Method in MIMO System

2013 ◽  
Vol 2013 ◽  
pp. 1-8
Author(s):  
Chaowei Wang ◽  
Weidong Wang ◽  
Cheng Wang ◽  
Shuai Wang ◽  
Yang Yu

Antenna selection has been regarded as an effective method to acquire the diversity benefits of multiple antennas while potentially reduce hardware costs. This paper focuses on receive antenna selection. According to the proportion between the numbers of total receive antennas and selected antennas and the influence of each antenna on system capacity, we propose a fast adaptive antenna selection algorithm for wireless multiple-input multiple-output (MIMO) systems. Mathematical analysis and numerical results show that our algorithm significantly reduces the computational complexity and memory requirement and achieves considerable system capacity gain compared with the optimal selection technique in the same time.

Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4867 ◽  
Author(s):  
Shida Zhong ◽  
Haogang Feng ◽  
Peichang Zhang ◽  
Jiajun Xu ◽  
Lei Huang ◽  
...  

A transmit antenna selection (TxAS) aided multi-user multiple-input multiple-output (MU-MIMO) system is proposed for operating in the MIMO downlink channel environments, which shows significant improvement in terms of higher data rate when compared to the conventional MU-MIMO systems operating without adopting TxAS, while maintaining low hardware costs. We opt for employing a simple yet efficient zero-forcing beamforming (ZFBF) linear precoding scheme at the transmitter in order to reduce the decoding complexity when considering users’ side. Moreover, considering that users within the same cell may require various qualities of service (QoS), we further propose a novel user-oriented smart TxAS (UOSTxAS) scheme, of which the main idea is to carry out AS based on the QoS requirements of different users. At last, we implement the proposed UOSTxAS scheme in the software defined radio (SDR) MIMO communication hardware platform, which is the first prototype hardware system that runs the UOSTxAS MU-MIMO scheme. Our results show that, by employing TxAS, the proposed UOSTxAS scheme is capable of offering higher data rates for priority users, while reasonably ensuring the performance of the common users requiring lower rates both in simulation and in the implemented SDR MIMO communication platform.


2021 ◽  
Author(s):  
Zhang Yiwen ◽  
Su Sunqing ◽  
Liao Wenliang ◽  
Lei Guowei ◽  
Yang Guangsong

Abstract In multiple-input-multiple-output (MIMO) systems, the selection of receive and transmit antennas is not just effective in increasing system capacity, but also in reducing RF link costs and system complexity. The exhaustive algorithm, i.e. the joint transmit and receive antenna selection (JTRAS) with the best accuracy, can search all the subsets of both transmit and receive antennas in order to find the optimal solution. However, with the increase of the number of antennas, the computational complexity is too large and its applicability is limited. In this paper, the antennas are coded by fractional coding with the maximization of channel capacity as the basic criterion, and three intelligent algorithms, namely genetic algorithm, cat swarm algorithm and particle swarm algorithm, are applied for antenna selection. The simulation results demonstrate that all three algorithms can efficiently accomplish the antenna selection. In the end, we compare them in terms of speed, accuracy and complexity of the search in MIMO systems.


Author(s):  
Ashu Taneja ◽  
Nitin Saluja

Background: The paper considers the wireless system with large number of users (more than 50 users) and each user is assigned large number of antennas (around 200) at the Base Station (BS). Objective: The challenges associated with the defined system are increased power consumption and high complexity of associated circuitry. The antenna selection is introduced to combat these problems while the usage of linear precoding reduces computational complexity. The literature suggests number of antenna selection techniques based on statistical properties of signal. However, each antenna selection technique suits well to specific number of users. Methods: In this paper, the random antenna selection is compared with norm-based antenna selection. It is analysed that the random antenna selection leads to inefficient spectral efficiency if the number of users are more than 50 in Multi-User Multiple-Input Multiple Output (MU-MIMO) system. Results: The paper proposes the optimization of Energy-Efficiency (EE) with random transmit antenna selection for large number of users in MU-MIMO systems. Conclusion: Also the computation leads to optimization of number of transmit antennas at the BS for energy efficiency. The proposed algorithm results in improvement of the energy efficiency by 27% for more than 50 users.


2019 ◽  
Vol 8 (3) ◽  
pp. 3272-3277

Multiple-Input-Multiple-Output (MIMO) system improves performance as well as the capacity of the wireless system. The use of large number of antennas in a MIMO system increases the hardware complexities and also its price. To overcome this, MIMO systems that activate single transmit antenna at a time, namely transmit antenna selection (TAS) is considered in this paper. Selection combining (SC) and Maximal ratio combining (MRC) are carried out at the receiver over    fading channels. Expressions for outage probability and average bit error rate (ABER) are derived considering TAS/SC as well as TAS/MRC MIMO systems. All the derived expressions are validated by Monte-Carlo simulation results.


Author(s):  
В.Б. КРЕЙНДЕЛИН ◽  
М.В. ГОЛУБЕВ

Совместный с прекодингом автовыбор антенн на приемной и передающей стороне - одно из перспективных направлений исследований для реализации технологий Multiple Transmission and Reception Points (Multi-TRP, множество точек передачи и приема) в системах со многими передающими и приемными антеннами Massive MIMO (Multiple-Input-Multiple-Output), которые активно развиваются в стандарте 5G. Проанализированы законодательные ограничения, влияющие на применимость технологий Massive MIMO, и специфика реализации разрабатываемого алгоритма в миллиметровомдиапа -зоне длин волн. Рассмотрены алгоритмы формирования матриц автовыбора антенн как на передающей, так и на приемной стороне. Сформулирована строгая математическая постановка задачи для двух критериев работы алгоритма: максимизация взаимной информации и минимизация среднеквадратичной ошибки. Joint precoding and antenna selection both on transmitter and receiver sides is one of the promising research areas for evolving toward the Multiple Transmission and Reception Points (Multi-TRP) concept in Massive MIMO systems. This technology is under active development in the coming 5G 3GPP releases. We analyze legal restrictions for the implementation of 5G Massive MIMO technologies in Russia and the specifics of the implementation of the developed algorithm in the millimeter wavelength range. Algorithms of antenna auto-selection matrices formation on both transmitting and receiving sides are considered. Two criteria are used for joint antenna selection and precoding: maximizing mutual information and minimizing mean square error.


Author(s):  
Elsadig Saeid ◽  
Varun Jeoti ◽  
Brahim Belhaouari Samir

Future Wireless Networks are expected to adopt multi-user multiple input multiple output (MU-MIMO) systems whose performance is maximized by making use of precoding at the transmitter. This chapter describes the recent advances in precoding design for MU-MIMO and introduces a new technique to improve the precoder performance. Without claiming to be comprehensive, the chapter gives deep introduction on basic MIMO techniques covering the basics of single user multiple input multiple output (SU-MIMO) links, its capacity, various transmission strategies, SU-MIMO link precoding, and MIMO receiver structures. After the introduction, MU-MIMO system model is defined and maximum achievable rate regions for both MU-MIMO broadcast and MU-MIMO multiple access channels are explained. It is followed by critical literature review on linear precoding design for MU-MIMO broadcast channel. This paves the way for introducing an improved technique of precoding design that is followed by its performance evaluation.


Author(s):  
Zhendong Zhou ◽  
Branka Vucetic

This chapter introduces the adaptive modulation and coding (AMC) as a practical means of approaching the high spectral efficiency theoretically promised by multiple-input multiple-output (MIMO) systems. It investigates the AMC MIMO systems in a generic framework and gives a quantitative analysis of the multiplexing gain of these systems. The effects of imperfect channel state information (CSI) on the AMC MIMO systems are pointed out. In the context of imperfect CSI, a design of robust near-capacity AMC MIMO system is proposed and its good performance is verified by simulation results. The proposed adaptive system is compared with the non-adaptive MIMO system, which shows the adaptive system approaches the channel capacity closer.


2016 ◽  
Vol 78 (5-7) ◽  
Author(s):  
Mohd Syarhan Idris ◽  
Nur Idora Abdul Razak ◽  
Azlina Idris ◽  
Ruhani Ab Rahman

Multiple Input Multiple Output (MIMO) system has been brought a great improvement in spectral efficiency and the system capacity by serving multiple users simultaneously. The mathematical model of downlink Multi-user MIMO system and its capacity has been presented as well as different precoded transmission schemes. It is to implementing the downlink MU-MIMO system, such as channel inversion (CI), block diagonalization (BD), dirty paper coding (DPC) and tomlinsonharashimaprecoding (THP). It is because, in wireless and mobile communication system has been requires a reliable transmission of high data rates under various channel type different scenarios and reduce MU interference in the system.   These compares the method of transmission for broadcast channel (BC) and propose the best one method that outperforms existing technique with percentage improvement from the worst performance.


2011 ◽  
Vol 186 ◽  
pp. 611-615
Author(s):  
Yong Wang ◽  
Hui Li

This paper proposes a new receive antenna selection algorithm based on the theory of convex optimization that improve the system performance over Rayleigh fading multiple-input multiple-output (MIMO) channels. The algorithm is based on approximated relaxed original optimization problem. The main effort in the approximated relaxed method is computing the Newton step for the centering problem, which consists of solving sets of linear equations constraints. The method produces not only a suboptimal choice of receive antennas, but also, a bound on how well the globally optimal choice does. The Monte-Carlo simulations show that the algorithm proposed can provide the performance very close to that of the optimal selection based on exhaustive search.


Sign in / Sign up

Export Citation Format

Share Document