FF-SVM: New FireFly-based Gene Selection Algorithm for Microarray Cancer Classification

Author(s):  
Nada Almugren ◽  
Hala Alshamlan
Diagnostics ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1936
Author(s):  
Abdulqader M. Almars ◽  
Majed Alwateer ◽  
Mohammed Qaraad ◽  
Souad Amjad ◽  
Hanaa Fathi ◽  
...  

The growth of abnormal cells in the brain causes human brain tumors. Identifying the type of tumor is crucial for the prognosis and treatment of the patient. Data from cancer microarrays typically include fewer samples with many gene expression levels as features, reflecting the curse of dimensionality and making classifying data from microarrays challenging. In most of the examined studies, cancer classification (Malignant and benign) accuracy was examined without disclosing biological information related to the classification process. A new approach was proposed to bridge the gap between cancer classification and the interpretation of the biological studies of the genes implicated in cancer. This study aims to develop a new hybrid model for cancer classification (by using feature selection mRMRe as a key step to improve the performance of classification methods and a distributed hyperparameter optimization for gradient boosting ensemble methods). To evaluate the proposed method, NB, RF, and SVM classifiers have been chosen. In terms of the AUC, sensitivity, and specificity, the optimized CatBoost classifier performed better than the optimized XGBoost in cross-validation 5, 6, 8, and 10. With an accuracy of 0.91±0.12, the optimized CatBoost classifier is more accurate than the CatBoost classifier without optimization, which is 0.81± 0.24. By using hybrid algorithms, SVM, RF, and NB automatically become more accurate. Furthermore, in terms of accuracy, SVM and RF (0.97±0.08) achieve equivalent and higher classification accuracy than NB (0.91±0.12). The findings of relevant biomedical studies confirm the findings of the selected genes.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Hala Alshamlan ◽  
Ghada Badr ◽  
Yousef Alohali

An artificial bee colony (ABC) is a relatively recent swarm intelligence optimization approach. In this paper, we propose the first attempt at applying ABC algorithm in analyzing a microarray gene expression profile. In addition, we propose an innovative feature selection algorithm, minimum redundancy maximum relevance (mRMR), and combine it with an ABC algorithm, mRMR-ABC, to select informative genes from microarray profile. The new approach is based on a support vector machine (SVM) algorithm to measure the classification accuracy for selected genes. We evaluate the performance of the proposed mRMR-ABC algorithm by conducting extensive experiments on six binary and multiclass gene expression microarray datasets. Furthermore, we compare our proposed mRMR-ABC algorithm with previously known techniques. We reimplemented two of these techniques for the sake of a fair comparison using the same parameters. These two techniques are mRMR when combined with a genetic algorithm (mRMR-GA) and mRMR when combined with a particle swarm optimization algorithm (mRMR-PSO). The experimental results prove that the proposed mRMR-ABC algorithm achieves accurate classification performance using small number of predictive genes when tested using both datasets and compared to previously suggested methods. This shows that mRMR-ABC is a promising approach for solving gene selection and cancer classification problems.


Sign in / Sign up

Export Citation Format

Share Document