Development of a patient-specific surgical simulator based on virtual reality

Author(s):  
Shuheng Liao ◽  
Yining Chen ◽  
Pengjie Sun ◽  
Denghong Liao ◽  
Xiaojun Chen
2020 ◽  
Vol 133 (2) ◽  
pp. 521-529 ◽  
Author(s):  
Vivek P. Bodani ◽  
Gerben E. Breimer ◽  
Faizal A. Haji ◽  
Thomas Looi ◽  
James M. Drake

OBJECTIVEEndoscopic resection of third-ventricle colloid cysts is technically challenging due to the limited dexterity and visualization provided by neuroendoscopic instruments. Extensive training and experience are required to master the learning curve. To improve the education of neurosurgical trainees in this procedure, a synthetic surgical simulator was developed and its realism, procedural content, and utility as a training instrument were evaluated.METHODSThe simulator was developed based on the neuroimaging (axial noncontrast CT and T1-weighted gadolinium-enhanced MRI) of an 8-year-old patient with a colloid cyst and hydrocephalus. Image segmentation, computer-aided design, rapid prototyping (3D printing), and silicone molding techniques were used to produce models of the skull, brain, ventricles, and colloid cyst. The cyst was filled with a viscous fluid and secured to the roof of the third ventricle. The choroid plexus and intraventricular veins were also included. Twenty-four neurosurgical trainees performed a simulated colloid cyst resection using a 30° angled endoscope, neuroendoscopic instruments, and image guidance. Using a 19-item feedback survey (5-point Likert scales), participants evaluated the simulator across 5 domains: anatomy, instrument handling, procedural content, perceived realism, and confidence and comfort level.RESULTSParticipants found the simulator’s anatomy to be highly realistic (mean 4.34 ± 0.63 [SD]) and appreciated the use of actual instruments (mean 4.38 ± 0.58). The procedural content was also rated highly (mean 4.28 ± 0.77); however, the perceived realism was rated slightly lower (mean 4.08 ± 0.63). Participants reported greater confidence in their ability to perform an endoscopic colloid cyst resection after using the simulator (mean 4.45 ± 0.68). Twenty-three participants (95.8%) indicated that they would use the simulator for additional training. Recommendations were made to develop complex case scenarios for experienced trainees (normal-sized ventricles, choroid plexus adherent to cyst wall, bleeding scenarios) and incorporate advanced instrumentation such as side-cutting aspiration devices.CONCLUSIONSA patient-specific synthetic surgical simulator for training residents and fellows in endoscopic colloid cyst resection was successfully developed. The simulator’s anatomy, instrument handling, and procedural content were found to be realistic. The simulator may serve as a valuable educational tool to learn the critical steps of endoscopic colloid cyst resection, develop a detailed understanding of intraventricular anatomy, and gain proficiency with bimanual neuroendoscopic techniques.


Author(s):  
Nicolás González Romo ◽  
Franco Ravera Zunino

AbstractVirtual reality (VR) has increasingly been implemented in neurosurgical practice. A patient with an unruptured anterior communicating artery (AcoA) aneurysm was referred to our institution. Imaging data from computed tomography angiography (CTA) was used to create a patient specific 3D model of vascular and skull base anatomy, and then processed to a VR compatible environment. Minimally invasive approaches (mini-pterional, supraorbital and mini-orbitozygomatic) were simulated and assessed for adequate vascular exposure in VR. Using an eyebrow approach, a mini-orbitozygomatic approach was performed, with clip exclusion of the aneurysm from the circulation. The step-by-step process of VR planning is outlined, and the advantages and disadvantages for the neurosurgeon of this technology are reviewed.


Author(s):  
Taku Sugiyama ◽  
Tod Clapp ◽  
Jordan Nelson ◽  
Chad Eitel ◽  
Hiroaki Motegi ◽  
...  

Abstract BACKGROUND Adequate surgical planning includes a precise understanding of patient-specific anatomy and is a necessity for neurosurgeons. Although the use of virtual reality (VR) technology is emerging in surgical planning and education, few studies have examined the effectiveness of immersive VR during surgical planning using a modern head-mounted display. OBJECTIVE To investigate if and how immersive VR aids presurgical discussions of cerebrovascular surgery. METHODS A multiuser immersive VR system, BananaVisionTM, was developed and used during presurgical discussions in a prospective patient cohort undergoing cerebrovascular surgery. A questionnaire/interview was administered to multiple surgeons after the surgeries to evaluate the effectiveness of the VR system compared to conventional imaging modalities. An objective assessment of the surgeon's knowledge of patient-specific anatomy was also conducted by rating surgeons’ hand-drawn presurgical illustrations. RESULTS The VR session effectively enhanced surgeons’ understanding of patient-specific anatomy in the majority of cases (83.3%). An objective assessment of surgeons’ presurgical illustrations was consistent with this result. The VR session also effectively improved the decision-making process regarding minor surgical techniques in 61.1% of cases and even aided surgeons in making critical surgical decisions about cases involving complex and challenging anatomy. The utility of the VR system was rated significantly higher by trainees than by experts. CONCLUSION Although rated as more useful by trainees than by experts, immersive 3D VR modeling increased surgeons’ understanding of patient-specific anatomy and improved surgical strategy in certain cases involving challenging anatomy.


2018 ◽  
Vol 25 (7) ◽  
pp. S93
Author(s):  
A.K. Dubin ◽  
D. Julian ◽  
P. Mattingly ◽  
R. Smith

Author(s):  
Matthew Bramlet ◽  
Kuocheng Wang ◽  
Alexander Clemons ◽  
Nathaniel Christopher Speidel ◽  
Steven M Lavalle ◽  
...  

1993 ◽  
Vol 7 (3) ◽  
pp. 203-205 ◽  
Author(s):  
Richard M. Satava

Sign in / Sign up

Export Citation Format

Share Document