CorFix: Virtual Reality Cardiac Surgical Planning System for Designing Patient Specific Vascular Grafts

Author(s):  
Byeol Kim ◽  
Phong Danh Nguyen ◽  
Pratham Nar ◽  
Xiaolong Liu ◽  
Yue-Hin Loke ◽  
...  
Author(s):  
Nicolás González Romo ◽  
Franco Ravera Zunino

AbstractVirtual reality (VR) has increasingly been implemented in neurosurgical practice. A patient with an unruptured anterior communicating artery (AcoA) aneurysm was referred to our institution. Imaging data from computed tomography angiography (CTA) was used to create a patient specific 3D model of vascular and skull base anatomy, and then processed to a VR compatible environment. Minimally invasive approaches (mini-pterional, supraorbital and mini-orbitozygomatic) were simulated and assessed for adequate vascular exposure in VR. Using an eyebrow approach, a mini-orbitozygomatic approach was performed, with clip exclusion of the aneurysm from the circulation. The step-by-step process of VR planning is outlined, and the advantages and disadvantages for the neurosurgeon of this technology are reviewed.


Author(s):  
Taku Sugiyama ◽  
Tod Clapp ◽  
Jordan Nelson ◽  
Chad Eitel ◽  
Hiroaki Motegi ◽  
...  

Abstract BACKGROUND Adequate surgical planning includes a precise understanding of patient-specific anatomy and is a necessity for neurosurgeons. Although the use of virtual reality (VR) technology is emerging in surgical planning and education, few studies have examined the effectiveness of immersive VR during surgical planning using a modern head-mounted display. OBJECTIVE To investigate if and how immersive VR aids presurgical discussions of cerebrovascular surgery. METHODS A multiuser immersive VR system, BananaVisionTM, was developed and used during presurgical discussions in a prospective patient cohort undergoing cerebrovascular surgery. A questionnaire/interview was administered to multiple surgeons after the surgeries to evaluate the effectiveness of the VR system compared to conventional imaging modalities. An objective assessment of the surgeon's knowledge of patient-specific anatomy was also conducted by rating surgeons’ hand-drawn presurgical illustrations. RESULTS The VR session effectively enhanced surgeons’ understanding of patient-specific anatomy in the majority of cases (83.3%). An objective assessment of surgeons’ presurgical illustrations was consistent with this result. The VR session also effectively improved the decision-making process regarding minor surgical techniques in 61.1% of cases and even aided surgeons in making critical surgical decisions about cases involving complex and challenging anatomy. The utility of the VR system was rated significantly higher by trainees than by experts. CONCLUSION Although rated as more useful by trainees than by experts, immersive 3D VR modeling increased surgeons’ understanding of patient-specific anatomy and improved surgical strategy in certain cases involving challenging anatomy.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Anna Di Laura ◽  
Johann Henckel ◽  
Harry Hothi ◽  
Alister Hart

Abstract Background Modern designs of joint replacements require a large inventory of components to be available during surgery. Pre-operative CT imaging aids 3D surgical planning and implant sizing, which should reduce the inventory size and enhance clinical outcome. We aimed to better understand the impact of the use of 3D surgical planning and Patient Specific Instrumentation (PSI) on hip implant inventory. Methods An initial feasibility study of 25 consecutive cases was undertaken to assess the discrepancy between the planned component sizes and those implanted to determine whether it was possible to reduce the inventory for future cases. Following this, we performed a pilot study to investigate the effect of an optimized inventory stock on the surgical outcome: we compared a group of 20 consecutive cases (experimental) with the 25 cases in the feasibility study (control). We assessed: (1) accuracy of the 3D planning system in predicting size (%); (2) inventory size changes (%); (3) intra and post-operative complications. Results The feasibility study showed variability within 1 size range, enabling us to safely optimize inventory stock for the pilot study. (1) 3D surgical planning correctly predicted sizes in 93% of the femoral and 89% of the acetabular cup components; (2) there was a 61% reduction in the implant inventory size; (3) we recorded good surgical outcomes with no difference between the 2 groups, and all patients had appropriately sized implants. Conclusions 3D planning is accurate in up to 95% of the cases. CT-based planning can reduce inventory size in the hospital setting potentially leading to a reduction in costs.


2008 ◽  
Author(s):  
Peter Hammer ◽  
Nikolay Vasilyev ◽  
Douglas Perrin ◽  
Pedro del Nido ◽  
Robert Howe

Surgical repair of the mitral valve results in better outcomes than valve replacement, yet diseased valves are often replaced due to the technical difficulty of the repair process. A surgical planning system based on patient-specific medical images that allows surgeons to simulate and compare potential repair strategies could greatly improve surgical outcomes. The system must simulate valve closure quickly and handle the complex boundary conditions imposed by the chords that tether the valve leaflets. We have developed a process for generating a triangulated mesh of the valve surface from volumetric image data of the opened valve. The closed position of the mesh is then computed using a mass-spring model of dynamics. In the mass-spring model, triangle sides are treated as linear springs supporting only tension. Chords are also treated as linear springs, and self-collisions are detected and handled inelastically. The equations of motion are solved using implicit numerical integration. The simulated closed state is compared with an image of the same valve taken in the closed state to assess accuracy of the model. The model exhibits rapid valve closure and is able to predict the closed state of the valve with reasonable accuracy.


2020 ◽  
pp. 000348942097021
Author(s):  
Steven Arild Wuyts Andersen ◽  
Maxwell Bergman ◽  
Jason P. Keith ◽  
Kimerly A. Powell ◽  
Brad Hittle ◽  
...  

Objectives: Virtual reality (VR) simulation for patient-specific pre-surgical planning and rehearsal requires accurate segmentation of key surgical landmark structures such as the facial nerve, ossicles, and cochlea. The aim of this study was to explore different approaches to segmentation of temporal bone surgical anatomy for patient-specific VR simulation. Methods: De-identified, clinical computed tomography imaging of 9 pediatric patients aged 3 months to 12 years were obtained retrospectively. The patients represented normal anatomy and key structures were manually segmented using open source software. The OTOPLAN (CAScination AG, Bern, Switzerland) otological planning software was used for guided segmentation. An atlas-based algorithm was used for computerized, automated segmentation. Experience with the different approaches as well as time and resulting models were compared. Results: Manual segmentation was time consuming but also the most flexible. The OTOPLAN software is not designed specifically for our purpose and therefore the number of structures that can be segmented is limited, there was some user-to-user variation as well as volume differences compared with manual segmentation. The atlas-based automated segmentation potentially allows a full range of structures to be segmented and produces segmentations comparable to those of manual segmentation with a processing time that is acceptable because of the minimal user interaction. Conclusion: Segmentation is fundamental for patient-specific VR simulation for pre-surgical planning and rehearsal in temporal bone surgery. The automated segmentation algorithm currently offers the most flexible and feasible approach and should be implemented. Further research is needed in relation to cases of abnormal anatomy. Level of evidence: 4


Author(s):  
Volker A. Coenen ◽  
Bastian E. Sajonz ◽  
Peter C. Reinacher ◽  
Christoph P. Kaller ◽  
Horst Urbach ◽  
...  

Abstract Background An increasing number of neurosurgeons use display of the dentato-rubro-thalamic tract (DRT) based on diffusion weighted imaging (dMRI) as basis for their routine planning of stimulation or lesioning approaches in stereotactic tremor surgery. An evaluation of the anatomical validity of the display of the DRT with respect to modern stereotactic planning systems and across different tracking environments has not been performed. Methods Distinct dMRI and anatomical magnetic resonance imaging (MRI) data of high and low quality from 9 subjects were used. Six subjects had repeated MRI scans and therefore entered the analysis twice. Standardized DICOM structure templates for volume of interest definition were applied in native space for all investigations. For tracking BrainLab Elements (BrainLab, Munich, Germany), two tensor deterministic tracking (FT2), MRtrix IFOD2 (https://www.mrtrix.org), and a global tracking (GT) approach were used to compare the display of the uncrossed (DRTu) and crossed (DRTx) fiber structure after transformation into MNI space. The resulting streamlines were investigated for congruence, reproducibility, anatomical validity, and penetration of anatomical way point structures. Results In general, the DRTu can be depicted with good quality (as judged by waypoints). FT2 (surgical) and GT (neuroscientific) show high congruence. While GT shows partly reproducible results for DRTx, the crossed pathway cannot be reliably reconstructed with the other (iFOD2 and FT2) algorithms. Conclusion Since a direct anatomical comparison is difficult in the individual subjects, we chose a comparison with two research tracking environments as the best possible “ground truth.” FT2 is useful especially because of its manual editing possibilities of cutting erroneous fibers on the single subject level. An uncertainty of 2 mm as mean displacement of DRTu is expectable and should be respected when using this approach for surgical planning. Tractographic renditions of the DRTx on the single subject level seem to be still illusive.


Author(s):  
Pieter C. van de Woestijne ◽  
Wouter Bakhuis ◽  
Amir H. Sadeghi ◽  
Jette J. Peek ◽  
Yannick J.H.J. Taverne ◽  
...  

Background Major aortopulmonary collateral arteries (MAPCAs), as seen in patients with pulmonary atresia, are arteries that supply blood from the aorta to the lungs and often require surgical intervention. To achieve complete repair in the least number of interventions, optimal imaging of the pulmonary arterial anatomy and MAPCAs is critical. 3D virtual reality (3D-VR) is a promising and upcoming new technology that could potentially ameliorate current imaging shortcomings. Methods A retrospective, proof-of-concept study was performed of all operated patients with pulmonary atresia and MAPCAs at our center between 2010 and 2020 with a preoperative computed tomography (CT) scan. CT images were reviewed by two congenital cardiac surgeons in 3D-VR to determine additional value of VR for MAPCA imaging compared to conventional CT and for preoperative planning of MAPCA repair. Results 3D-VR visualizations were reconstructed from CT scans of seven newborns where the enhanced topographic anatomy resulted in improved visualization of MAPCA. In addition, surgical planning was improved since new observations or different preoperative plans were apparent in 4 out of 7 cases. After the initial setup, VR software and hardware was reported to be easy and intuitive to use. Conclusions This study showed technical feasibility of 3D-VR reconstruction of children with immersive visualization of topographic anatomy in an easy-to-use format leading to an improved surgical planning of MAPCA surgery. Future prospective studies are required to investigate the clinical benefits in larger populations.


2019 ◽  
Vol 6 (2) ◽  
pp. 31-41
Author(s):  
Jiankui Yuan ◽  
David Mansur ◽  
Min Yao ◽  
Tithi Biswas ◽  
Yiran Zheng ◽  
...  

ABSTRACT Purpose: We developed an integrated framework that employs a full Monte Carlo (MC) model for treatment-plan simulations of a passive double-scattering proton system. Materials and Methods: We have previously validated a virtual machine source model for full MC proton-dose calculations by comparing the percentage of depth-dose curves, spread-out Bragg peaks, and lateral profiles against measured commissioning data. This study further expanded our previous work by developing an integrate framework that facilitates its clinical use. Specifically, we have (1) constructed patient-specific applicator and compensator numerically from the plan data and incorporated them into the beamline, (2) created the patient anatomy from the computed tomography image and established the transformation between patient and machine coordinate systems, and (3) developed a graphical user interface to ease the whole process from importing the treatment plan in the Digital Imaging and Communications in Medicine format to parallelization of the MC calculations. End-to-end tests were performed to validate the functionality, and 3 clinical cases were used to demonstrate clinical utility of the framework. Results: The end-to-end tests demonstrated that the framework functioned correctly for all tested functionality. Comparisons between the treatment planning system calculations and MC results in 3 clinical cases revealed large dose difference up to 17%, especially in the beam penumbra and near the end of beam range. The discrepancy likely originates from a variety of sources, such as the dose algorithms, modeling of the beamline, and the dose metric. The agreement for other regions was acceptable. Conclusion: An integrated framework was developed for full MC simulations of double-scattering proton therapy. It can be a valuable tool for dose verification and plan evaluation.


Sign in / Sign up

Export Citation Format

Share Document