The Design and Implementation of IEEE 1588v2 Clock Synchronization System by Generating Hardware Timestamps in MAC Layer

Author(s):  
Meng Dong ◽  
Zhiliang Qiu ◽  
Weitao Pan ◽  
Can Chen ◽  
Junxiang Zhang ◽  
...  
2015 ◽  
Vol 1092-1093 ◽  
pp. 332-336
Author(s):  
Hong Zhang Xiong ◽  
Xi Chen ◽  
Ling Teng ◽  
Qiang Gao ◽  
Yang Wang

Development of intelligent grid have increasing demands for time synchronization, high precision, large scale, high performance time synchronization system has become necessary guarantee for the normal operation of the power grid. This article introduced the composition of the time synchronization system, discusses the IEEE1588 implementation of high precision clock synchronization principle and SDH data transmission principle, analysis of the PTP protocol for transmission through the principle of the SDH E1 line, gives the networking scheme of PTP over the E1 way, which meet the precision requirement of 1 us.


2012 ◽  
Vol 532-533 ◽  
pp. 292-296 ◽  
Author(s):  
Kang Wang ◽  
Yong Hui Hu ◽  
Zai Min He ◽  
Hong Jiao Ma

In view of PTP high precise timing requirement for many application fields, GPS time service is provided with the advantages of high precision and high stabilization. The principle and timescale of PTP based on GPS are analyzed and discussed. And then a PTP time synchronization platform with GPS-based UTC time is designed and implemented, the correlative key design flowchart is described as well. Finally, the paper gives the experiment results, which show the time synchronization accuracies can reach nanosecond range.


2010 ◽  
Vol 2010 ◽  
pp. 1-12
Author(s):  
Jiaqi Zhang ◽  
Molin Jia ◽  
Noriyoshi Yamauchi ◽  
Takaaki Baba

A system data sharing protocol of mobile WSN named synchronous dynamic multihop data sharing protocol (S-DMDS) is presented for automated guided vehicle (AGV) system. It is a cross-layer protocol designed from route layer to MAC layer. By adopting a concept of system data sharing, it is possible to make each node exchange the data timely with all the other nodes. It is also a topology-agnostic protocol which has no knowledge of neighbors, routes, or next hops. From the results of the 16-nodes simulation, S-DMDS protocol is proved to be efficient exchange data timely between the devices of AGV system in mobile multihop situation. Moreover, it also shows that S-DMDS significantly outperforms NST-AODV with investing about 41.6% system sharing delay as well as 80% RAM consumption. At last, 5-node experiment indicates that S-DMDS can work well in real environment.


Sign in / Sign up

Export Citation Format

Share Document