Room Temperature Multi-stacked Quantum Dot Lasers Basic Components Of Threshold Current Density

Author(s):  
S.V. Zaitsev ◽  
A.M. Georgievski ◽  
N.Yu. Gordeev ◽  
V.I. Kopchatov ◽  
V.M. Ustinov ◽  
...  
2006 ◽  
Author(s):  
Abdelmajid Salhi ◽  
Vittorianna Tasco ◽  
Luigi Martiradonna ◽  
Giuseppe Visimberga ◽  
Laura Fortunato ◽  
...  

2000 ◽  
Author(s):  
Guangtian T. Liu ◽  
Andreas Stintz ◽  
Hua Li ◽  
Luke F. Lester ◽  
Kevin J. Malloy

1997 ◽  
Vol 31 (9) ◽  
pp. 947-949 ◽  
Author(s):  
S. V. Zaitsev ◽  
N. Yu. Gordeev ◽  
V. I. Kopchatov ◽  
A. M. Georgievskii ◽  
V. M. Ustinov ◽  
...  

2005 ◽  
Vol 44 (4B) ◽  
pp. 2520-2522 ◽  
Author(s):  
Sumon K. Ray ◽  
Kristian M. Groom ◽  
Richard A. Hogg ◽  
Hui-Yun Liu ◽  
Ian R. Sellers ◽  
...  

2007 ◽  
Vol 7 (12) ◽  
pp. 4443-4446 ◽  
Author(s):  
Jin Soo Kim ◽  
Cheul-Ro Lee ◽  
Kyeong Won Seol ◽  
Dae Kon Oh

For the InAs quantum dot (QD) lasers based on the InAlGaAs-InAlAs-InP material system, the lasing operation was successfully achieved up to 100 °C. The lasing wavelength was linearly increased with a slope of 0.100 nm/K up to 50 °C and then, decreased with (−)0.419 nm/K above 50 °C. The temperature-induced shift in the lasing wavelength can be attributed to both the band-gap shrinkage and the band-filling effect of carriers, which was well agreed with the characteristic temperatures of the InAs QD laser calculated from the temperature dependence of threshold current density.


Sign in / Sign up

Export Citation Format

Share Document