Policy Transfer from Simulations to Real World by Transfer Component Analysis

Author(s):  
Takamitsu Matsubara ◽  
Yu Norinaga ◽  
Yuto Ozawa ◽  
Yunduan Cui
2014 ◽  
Vol 998-999 ◽  
pp. 1138-1145
Author(s):  
Ke Ren Wang ◽  
Wen Xiang Li

Video steganalysis takes effect when videos corrupted by the target steganography method are available. Nevertheless, classical classifiers deteriorate in the opposite case. This paper presents a method to cope with the problem of steganography method mismatch for the detection of motion vector (MV) based steganography. Firstly, Adding-or-Subtracting-One (AoSO) feature against MV based steganography and Transfer Component Analysis (TCA) for domain adaptation are revisited. Distributions of AoSO feature against various MV based steganography methods are illustrated, followed by the potential effect of TCA based AoSO feature. Finally, experiments are carried out on various cases of steganography method mismatch. Performance results demonstrate that TCA+AoSO feature significantly outperforms AoSO feature, and is more favorable for real-world applications.


2021 ◽  
Vol 54 (4) ◽  
pp. 1-34
Author(s):  
Felipe L. Gewers ◽  
Gustavo R. Ferreira ◽  
Henrique F. De Arruda ◽  
Filipi N. Silva ◽  
Cesar H. Comin ◽  
...  

Principal component analysis (PCA) is often applied for analyzing data in the most diverse areas. This work reports, in an accessible and integrated manner, several theoretical and practical aspects of PCA. The basic principles underlying PCA, data standardization, possible visualizations of the PCA results, and outlier detection are subsequently addressed. Next, the potential of using PCA for dimensionality reduction is illustrated on several real-world datasets. Finally, we summarize PCA-related approaches and other dimensionality reduction techniques. All in all, the objective of this work is to assist researchers from the most diverse areas in using and interpreting PCA.


Author(s):  
Takeshi Koya ◽  
◽  
Nobuo Iwasaki ◽  
Takaaki Ishibashi ◽  
Go Hirano ◽  
...  

In real world environments where acoustic signals are contaminated with various noises, it is difficult to estimate the Signal-to-Noise Ratio (SNR) only from signals observed at microphones; the knowledge of acoustic transfer functions and original source signals is inevitable for SNR estimation. The present paper proposes a method to estimate SNR approximately in the real world environments without the knowledge of transfer functions and source signals: SNR is estimated after application of Independent Component Analysis (ICA) to the signals observed at microphones. Our proposed method also works as a speech segment detector since detection of speech segments are necessarily carried out in the course of SNR estimation. From several experimental results, the proposed method has been confirmed to be valid.


2021 ◽  
pp. 1-36
Author(s):  
Takuya Isomura ◽  
Taro Toyoizumi

For many years, a combination of principal component analysis (PCA) and independent component analysis (ICA) has been used for blind source separation (BSS). However, it remains unclear why these linear methods work well with real-world data that involve nonlinear source mixtures. This work theoretically validates that a cascade of linear PCA and ICA can solve a nonlinear BSS problem accurately—when the sensory inputs are generated from hidden sources via nonlinear mappings with sufficient dimensionality. Our proposed theorem, termed the asymptotic linearization theorem, theoretically guarantees that applying linear PCA to the inputs can reliably extract a subspace spanned by the linear projections from every hidden source as the major components—and thus projecting the inputs onto their major eigenspace can effectively recover a linear transformation of the hidden sources. Then subsequent application of linear ICA can separate all the true independent hidden sources accurately. Zero-element-wise-error nonlinear BSS is asymptotically attained when the source dimensionality is large and the input dimensionality is sufficiently larger than the source dimensionality. Our proposed “Data Availability” section just before the Acknowledgments is validated analytically and numerically. Moreover, the same computation can be performed by using Hebbian-like plasticity rules, implying the biological plausibility of this nonlinear BSS strategy. Our results highlight the utility of linear PCA and ICA for accurately and reliably recovering nonlinearly mixed sources and suggest the importance of employing sensors with sufficient dimensionality to identify true hidden sources of real-world data.


Sign in / Sign up

Export Citation Format

Share Document