Green Job Shop Scheduling Problem with Machine at Different Speeds using a multi-objective grey wolf optimization algorithm*

Author(s):  
Yuesheng Luo ◽  
Chao Lu ◽  
Xinyu Li ◽  
Ling Wang ◽  
Liang Gao
2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Tianhua Jiang ◽  
Chao Zhang ◽  
Huiqi Zhu ◽  
Guanlong Deng

Workshop scheduling has mainly focused on the performances involving the production efficiency, such as times and quality, etc. In recent years, environmental metrics have attracted the attention of many researchers. In this study, an energy-efficient job shop scheduling problem is considered, and a grey wolf optimization algorithm with double-searching mode (DMGWO) is proposed with the objective of minimizing the total cost of energy-consumption and tardiness. Firstly, the algorithm starts with a discrete encoding mechanism, and then a heuristic algorithm and the random rule are employed to implement the population initialization. Secondly, a new framework with double-searching mode is developed for the GWO algorithm. In the proposed DMGWO algorithm, besides of the searching mode of the original GWO, a random seeking mode is added to enhance the global search ability. Furthermore, an adaptive selection operator of the two searching modes is also presented to coordinate the exploration and exploitation. In each searching mode, a discrete updating method of individuals is designed by considering the discrete characteristics of the scheduling solution, which can make the algorithm directly work in a discrete domain. In order to further improve the solution quality, a local search strategy is embedded into the algorithm. Finally, extensive simulations demonstrate the effectiveness of the proposed DMGWO algorithm for solving the energy-efficient job shop scheduling problem based on 43 benchmarks.


Author(s):  
Tianhua Jiang

This paper aims to develop a hybrid grey wolf optimization algorithm (HGWO) for solving the job shop scheduling problem (JSP) with the objective of minimizing the makespan. Firstly, to make the GWO suitable for the discrete nature of JSP, an encoding mechanism is proposed to implement the continuous encoding of the discrete scheduling problem, and a ranked-order value (ROV) rule is used to conduct the conversion between individual position and operation permutation. Secondly, a heuristic algorithm and the random rule are combined to implement the population initialization in order to ensure the quality and diversity of initial solutions. Thirdly, a variable neighborhood search algorithm is embedded to improve the local search ability of our algorithm. In addition, to further improve the solution quality, genetic operators (crossover and mutation) are introduced to balance the exploitation and exploration ability. Finally, experimental results demonstrate the effectiveness of the proposed algorithm based on 23 benchmark instances.


Sign in / Sign up

Export Citation Format

Share Document