A Smart Home Energy Consumption Monitoring System Integrated with Internet Connection

Author(s):  
MULIADI ◽  
M. YOGI FAHREZI ◽  
INTAN SARI ARENI ◽  
ELYAS PALANTEI ◽  
ANDANI ACHMAD
2019 ◽  
Vol 01 (02) ◽  
pp. 31-39 ◽  
Author(s):  
Duraipandian M. ◽  
Vinothkanna R.

The paper proposing the cloud based internet of things for the smart connected objects, concentrates on developing a smart home utilizing the internet of things, by providing the embedded labeling for all the tangible things at home and enabling them to be connected through the internet. The smart home proposed in the paper concentrates on the steps in reducing the electricity consumption of the appliances at the home by converting them into the smart connected objects using the cloud based internet of things and also concentrates on protecting the house from the theft and the robbery. The proposed smart home by turning the ordinary tangible objects into the smart connected objects shows considerable improvement in the energy consumption and the security provision.


2021 ◽  
Vol 1085 (1) ◽  
pp. 012026
Author(s):  
R S Hariharan ◽  
Reema Agarwal ◽  
Madhurya Kandamuru ◽  
H Abdul Gaffar

2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Glauco Feltrin ◽  
Nemanja Popovic ◽  
Kallirroi Flouri ◽  
Piotr Pietrzak

Wireless sensor networks have been shown to be a cost-effective monitoring tool for many applications on civil structures. Strain cycle monitoring for fatigue life assessment of railway bridges, however, is still a challenge since it is data intensive and requires a reliable operation for several weeks or months. In addition, sensing with electrical resistance strain gauges is expensive in terms of energy consumption. The induced reduction of battery lifetime of sensor nodes increases the maintenance costs and reduces the competitiveness of wireless sensor networks. To overcome this drawback, a signal conditioning hardware was designed that is able to significantly reduce the energy consumption. Furthermore, the communication overhead is reduced to a sustainable level by using an embedded data processing algorithm that extracts the strain cycles from the raw data. Finally, a simple software triggering mechanism that identifies events enabled the discrimination of useful measurements from idle data, thus increasing the efficiency of data processing. The wireless monitoring system was tested on a railway bridge for two weeks. The monitoring system demonstrated a good reliability and provided high quality data.


2018 ◽  
Vol 42 ◽  
pp. 01003
Author(s):  
Sentagi Sesotya Utami ◽  
Faridah ◽  
Na’im A. Azizi ◽  
Erlin Kencanawati ◽  
M. Akbar Tanjung ◽  
...  

Current studies conducted by JICA, AMPRI and IFC-World Bank, reported that large commercial buildings in Indonesia are not energy and water efficient. One of the cause is the lack of regulation. Meanwhile, effective regulations to reduce energy and water consumption are the concern mostly in a new building to obtain a building permit. This strategy is understandable as retrofitting existing buildings are often more difficult to be implemented, and enforcement is still a major issue in Indonesia. Local governments are currently working on streamlining building permit process as well as developing an online monitoring system for existing buildings. By applying a Building Energy Management System (BEMS) enables to reduce energy consumption up to 15%. An energy monitoring system was designed and installed through this research for Department of Nuclear Engineering and Engineering Physics (DNEEP) building, Faculty of Engineering, Universitas Gadjah Mada. It is a 20 years old two-story building used for educational activities, which consist of classrooms, laboratories, offices and storage spaces. An audit energy was done recently in 2015 where an energy consumption of 261.299,636 kWh/year.m2 was reported. In the existing condition, a power meter is inaccessible and therefore, the only feedback of occupancy behavior in the energy consumption is through the electricity bill. The previous study has shown that building occupants would behave more efficiently if the amount of energy used is notified, and the amount of energy savings are recorded. However, these energy monitoring systems are considered expensive and uniquely tailored for every building. This research aims to design and install a cost effective BEMS based on occupant’s satisfactory assessment of the lighting, acoustics, and air conditioning quality. The data will be used as a decision supporting system (DSS) by building management through the use of a GUI. The design of the interface was based on a survey result from the prospective users. Installed energy monitoring system uses a current sensor with an accuracy of 98% and a precision of 0.04 A while the voltage sensor with an accuracy of 98% and a precision of 0.58 V. The performance testing shows that the number of web clients influences delay of data transmission. The result of the survey shows that GUI is categorized as fair in design without a significant difference between the perceptions of users with and without survey supervision.


Author(s):  
S. Loyola Samraj ◽  
Nisha V. Bhalke ◽  
A. Aarthi ◽  
R. Srinath ◽  
E. Prabhu

Sign in / Sign up

Export Citation Format

Share Document