Zero voltage switching assistance design for DC-DC series resonant converter with constant input current for wide load range

Author(s):  
Tarak Saha ◽  
Hongjie Wang ◽  
Regan Zane
Author(s):  
Mohamed Salem ◽  
Awang Jusoh ◽  
Nik Rumzi Nik Idris ◽  
Tole Sutikno ◽  
Yonis.M.Yonis Buswig

This paper presents a phase shifted series resonant converter with step up high frequency transformer to achieve the functions of high output voltage, high power density and wide range of Zero Voltage Switching (ZVS). In this approach, the output voltage is controlled by varying the switching frequency. The controller has been designed to achieve a good stability under different load conditions. The converter will react to the load variation by varying its switching frequency to satisfy the output voltage requirements. Therefore in order to maintain constant output voltage, for light load (50% of the load), the switching frequency will be decreased to meet the desired output, while for the full load (100%) conditions, the switching frequency will be increased. Since the controlled switching frequency is limited by the range between the higher and lower resonant frequencies , the switches can be turned on under ZVS. In this study, a laboratory experiment has been conducted to verify the effectiveness of the system performance.


Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 818
Author(s):  
HwaPyeong Park ◽  
DoKyoung Kim ◽  
SeungHo Baek ◽  
JeeHoon Jung

TheCLLC resonant converter has been widely used to obtaina high power conversion efficiency with sinusoidal current waveforms and a soft switching capability. However, it has a limited voltage gain range according to the input voltage variation. The current-fed structure canbe one solution to extend the voltage gain range for the wide input voltage variation, butit has a limited zero voltage switching (ZVS) range. In this paper, the current-fed CLLC resonant converter with additional inductance is proposed to extend the ZVS range. The operational principle is analyzed to design the additional inductance for obtaining the extended ZVS range. The design methodology of the additional inductance is proposed to maximize the ZVS capability for the entire load range. The performance of the proposed method is verified with a 20 W prototype converter.


Sign in / Sign up

Export Citation Format

Share Document