Short-Circuit Fault Ride-Through of Flying-Capacitor Multilevel Converters through Rapid Fault Detection and Idle-mode Operation

Author(s):  
Nathan Pallo ◽  
Mads Graungaard Taul ◽  
Andrew Stillwell ◽  
Robert C. N. Pilawa-Podgurski
Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1753 ◽  
Author(s):  
Bing Han ◽  
Yonggang Li

The low voltage direct current (LVDC) distribution networks are connected with too many kinds of loads and sources, which makes them prone to failure. Due to the small damping value in the DC lines, the fault signal propagates so fast that the impact current with the wave front of millisecond and the transient voltage pose great challenges for fault detection. Even worse, some faults with small currents are difficult to detect and the communication is out of sync, resulting in protection misoperation. These problems have severely affected the new energy utilization. In view of this, a DC fault current limiter (FCL) composed of inductance, resistance, and power electronic switch was designed in this paper. The rising speed of fault current can be decreased by the series inductance and the peak value of the fault current can be limited by series impedance, thus in this way the running time can be gained for fault detection and protection. For distributed energy access, by deducing the short circuit fault characteristic expression of LVDC distribution network, the feasibility of FCL was verified. Based on the structure of the bridge-type alternating current (AC) current limiter, the structure and parameters of the DC FCL were determined according to the fault ride-through target. Then, a low voltage ride-through strategy based on DC FCL was proposed for the bipolar short-circuit fault of LVDC distribution network. Finally, MATLAB/Simulink simulation was used to verify the rationality of the proposed FCL and its ride-through strategy.


Sign in / Sign up

Export Citation Format

Share Document