Image Analysis Using Machine Learning: Anatomical Landmarks Detection in Fetal Ultrasound Images

Author(s):  
Bahbibi Rahmatullah ◽  
Aris T. Papageorghiou ◽  
J. Alison Noble
Author(s):  
Sandeep Kumar E. ◽  
N. Sriraam

Ultrasound imaging has widespread applications in medical field, especially for the study and assessment of fetus in the womb of pregnant woman. This paper highlights the background information regarding basics of ultrasound imaging, the various anatomical terminologies related to human body and fetus, and various steps to identify the organs of fetus using ultrasound images with major emphasis on the fetus heart detection. The paper serves an information source for any engineering person from non-medical background to carry out his/ her research in fetal ultrasound image analysis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kristi Powers ◽  
Raymond Chang ◽  
Justin Torello ◽  
Rhonda Silva ◽  
Yannick Cadoret ◽  
...  

AbstractEchocardiography is a widely used and clinically translatable imaging modality for the evaluation of cardiac structure and function in preclinical drug discovery and development. Echocardiograms are among the first in vivo diagnostic tools utilized to evaluate the heart due to its relatively low cost, high throughput acquisition, and non-invasive nature; however lengthy manual image analysis, intra- and inter-operator variability, and subjective image analysis presents a challenge for reproducible data generation in preclinical research. To combat the image-processing bottleneck and address both variability and reproducibly challenges, we developed a semi-automated analysis algorithm workflow to analyze long- and short-axis murine left ventricle (LV) ultrasound images. The long-axis B-mode algorithm executes a script protocol that is trained using a reference library of 322 manually segmented LV ultrasound images. The short-axis script was engineered to analyze M-mode ultrasound images in a semi-automated fashion using a pixel intensity evaluation approach, allowing analysts to place two seed-points to triangulate the local maxima of LV wall boundary annotations. Blinded operator evaluation of the semi-automated analysis tool was performed and compared to the current manual segmentation methodology for testing inter- and intra-operator reproducibility at baseline and after a pharmacologic challenge. Comparisons between manual and semi-automatic derivation of LV ejection fraction resulted in a relative difference of 1% for long-axis (B-mode) images and 2.7% for short-axis (M-mode) images. Our semi-automatic workflow approach reduces image analysis time and subjective bias, as well as decreases inter- and intra-operator variability, thereby enhancing throughput and improving data quality for pre-clinical in vivo studies that incorporate cardiac structure and function endpoints.


Author(s):  
Ying-Chun Jheng ◽  
Yen-Po Wang ◽  
Hung-En Lin ◽  
Kuang-Yi Sung ◽  
Yuan-Chia Chu ◽  
...  

2021 ◽  
pp. 155335062110186
Author(s):  
Abdel-Moneim Mohamed Ali ◽  
Emran El-Alali ◽  
Adam S. Weltz ◽  
Scott T. Rehrig

Current experience suggests that artificial intelligence (AI) and machine learning (ML) may be useful in the management of hospitalized patients, including those with COVID-19. In light of the challenges faced with diagnostic and prognostic indicators in SARS-CoV-2 infection, our center has developed an international clinical protocol to collect standardized thoracic point of care ultrasound data in these patients for later AI/ML modeling. We surmise that in the future AI/ML may assist in the management of SARS-CoV-2 patients potentially leading to improved outcomes, and to that end, a corpus of curated ultrasound images and linked patient clinical metadata is an invaluable research resource.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Barmak Honarvar Shakibaei Asli ◽  
Yifan Zhao ◽  
John Ahmet Erkoyuncu

AbstractHigh-quality medical ultrasound imaging is definitely concerning motion blur, while medical image analysis requires motionless and accurate data acquired by sonographers. The main idea of this paper is to establish some motion blur invariant in both frequency and moment domain to estimate the motion parameters of ultrasound images. We propose a discrete model of point spread function of motion blur convolution based on the Dirac delta function to simplify the analysis of motion invariant in frequency and moment domain. This model paves the way for estimating the motion angle and length in terms of the proposed invariant features. In this research, the performance of the proposed schemes is compared with other state-of-the-art existing methods of image deblurring. The experimental study performs using fetal phantom images and clinical fetal ultrasound images as well as breast scans. Moreover, to validate the accuracy of the proposed experimental framework, we apply two image quality assessment methods as no-reference and full-reference to show the robustness of the proposed algorithms compared to the well-known approaches.


Sign in / Sign up

Export Citation Format

Share Document