Traffic State Estimation using DSRC-Enabled Probe Vehicles

Author(s):  
Sarthak Chaturvedi ◽  
AbiramiKrishna Ashok ◽  
Bhargava Rama Chilukuri
Author(s):  
Mohammadreza Kavianipour ◽  
Ramin Saedi ◽  
Ali Zockaie ◽  
Meead Saberi

A network fundamental diagram (NFD) represents the relationship between network-wide average flow and average density. Network traffic state estimation to observe NFD when congestion is heterogeneously distributed, as a result of a time-varying and asymmetric demand matrix, is a challenging problem. Recent studies have formulated the NFD estimation problem using both fixed measurements and probe trajectories. They are often based on a given ground-truth NFD for a single day demand. Stochastic variations in network demand and supply may significantly affect the approximation of an NFD. This study proposes a modified framework to estimate network traffic states to observe NFD while capturing the stochasticity in transportation networks. A mixed integer problem with non-linear constraints is formulated to address stochasticity in the NFD estimation problem. To solve this Nondeterministic Polynomial-hard (NP-hard) problem, a solution algorithm based on the simulated annealing method is applied. The problem is formulated and the solution algorithm is implemented to find an optimal configuration of loop detectors and probe vehicles to estimate the NFD of the Chicago downtown network and capture its day-to-day variations, considering a given available budget. Ground-truth NFDs and estimated NFDs based on a subset of loop detectors and probe vehicles are calculated using a simulation-based dynamic traffic assignment model, which is the best surrogate available to replicate real-world conditions. The main contribution of this study is to capture stochasticity in the demand and supply sides to find a more robust subset of links and trajectories to be acquired for the NFD estimation.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 1996
Author(s):  
Hoe Kyoung Kim ◽  
Younshik Chung ◽  
Minjeong Kim

Traffic flow data, such as flow, density and speed, are crucial for transportation planning and traffic system operation. Recently, a novel traffic state estimating method was proposed using the distance to a leading vehicle measured by an advanced driver assistance system (ADAS) camera. This study examined the effect of an ADAS camera with enhanced capabilities on traffic state estimation using image-based vehicle identification technology. Considering the realistic distance error of the ADAS camera from the field experiment, a microscopic simulation model, VISSIM, was employed with multiple underlying parameters such as the number of lanes, traffic demand, the penetration rate of ADAS vehicles and the spatiotemporal range of the estimation area. Although the enhanced functions of the ADAS camera did not affect the accuracy of the traffic state estimates significantly, the ADAS camera can be used for traffic state estimation. Furthermore, the vehicle identification distance of the ADAS camera and traffic conditions with more lanes did not always ensure better accuracy of the estimates. Instead, it is recommended that transportation planners and traffic engineering practitioners carefully select the relevant parameters and their range to ensure a certain level of accuracy for traffic state estimates that suit their purposes.


2015 ◽  
Vol 15 (5) ◽  
pp. 5-16
Author(s):  
H. Abouaïssa ◽  
H. Majid

Abstract The studies presented in this paper deal with traffic control in case of missing data and/or when the loop detectors are faulty. We show that the traffic state estimation plays an important role in traffic prediction and control. Two approaches are presented for the estimation of the main traffic variables (traffic density and mean speed). The state constructors obtained are then used for traffic flow control. Several numerical simulations show very promising results for both traffic state estimation and control.


2019 ◽  
Vol 172 (1) ◽  
pp. 47-56
Author(s):  
Han Yang ◽  
J. Peter Jin ◽  
Zhengyu Duan ◽  
Bin Ran ◽  
Dongyuan Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document